P11B-2101
Pandora – Discovering the origin of the moons of Mars (a proposed Discovery mission)

Monday, 14 December 2015
Poster Hall (Moscone South)
Serina Diniega, NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Abstract:
After decades of intensive exploration of Mars, fundamental questions about the origin and evolution of the martian moons, Phobos and Deimos, remain unanswered. Their spectral characteristics are similar to C- or D-class asteroids, suggesting that they may have originated in the asteroid belt or outer solar system. Perhaps these ancient objects were captured separately, or maybe they are the fragments of a captured asteroid disrupted by impact. Various lines of evidence hint at other possibilities: one alternative is co-formation with Mars, in which case the moons contain primitive martian materials. Another is that they are re-accreted ejecta from a giant impact and contain material from the early martian crust. The Pandora mission, proposed in response to the 2014 NASA Discovery Announcement of Opportunity, will acquire new information needed to determine the provenance of the moons of Mars. Pandora will travel to and successively orbit Phobos and Deimos to map their chemical and mineral composition and further refine their shape and gravity. Geochemical data, acquired by nuclear- and infrared-spectroscopy, can distinguish between key origin hypotheses. High resolution imaging data will enable detailed geologic mapping and crater counting to determine the timing of major events and stratigraphy. Data acquired will be used to determine the nature of and relationship between "red" and "blue" units on Phobos, and determine how Phobos and Deimos are related. After identifying material representative of each moons’ bulk composition, analysis of the mineralogical and elemental composition of this material will allow discrimination between the formation hypotheses for each moon. The information acquired by Pandora can then be compared with similar data sets for other solar system bodies and from meteorite studies. Understanding the formation of the martian moons within this larger context will yield a better understanding of processes acting in the early solar system, focusing in particular on Mars’ accretionary environment.