P53D-2158
The investigation of moving dunes over Mars using very high resolution topography and sub pixel co-registration method.

Friday, 18 December 2015
Poster Hall (Moscone South)
Jungrack Kim, University of Seoul, Seoul, South Korea and HyunSeob Baik, Yonsei University, Seoul, South Korea
Abstract:
Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics. Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface.

In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; and 2) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage based on a least squares correlation conducted on a pyramidal processor. Consequently, this scheme not only measured Martian dune migration more precisely, but it also achieved the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Rabe craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values. The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and can be compared with the improved General Circulation Model and the numerical simulation.