V23B-3129
Zircon trace element geochemistry and growth of the Pleistocene to Holocene Mono Craters rhyolite magma system, California (USA)

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Jonathan S Miller1, Natalie Baker1, Jorge A Vazquez2, Mae Marcaida1,3 and Marsha Izabella Lidzbarski4, (1)San Jose State University, San Jose, CA, United States, (2)USGS, Menlo Park, CA, United States, (3)USGS Western Regional Offices Menlo Park, Menlo Park, CA, United States, (4)USGS/San Jose State University, San Jose, CA, United States
Abstract:
The Mono Craters, part of the Mono-Inyo volcanic chain in eastern California, comprise at least 27 high-silica Pleistocene to Holocene rhyolite domes, lava flows and tephra cones. The Holocene chronology of the Mono Craters is well constrained but only recently has 238U-230Th zircon and 40Ar/39Ar dating elucidated the Pleistocene eruptive history. We performed trace element analysis on dated zircon crystal rims and sectioned interiors (using SHRIMP-RG) from 3 rhyolite domes (21, 12.5, and 7 ka) with additional rim data on 5 ashes separated from juvenile pumice clasts in the correlative Wilson Creek Formation (spanning from 62 to 21 ka). Ti-in-zircon (TTi,zrc) thermometry (titania activity from coexisting Fe-Ti oxides) gives temperatures predominantly between 650°C and 750°C, similar to average zircon saturation temperatures (Tzrc,sat). The observation that Tzrc,sat ≈ TTi,zrc indicates that Mono Craters rhyolite magmas were zircon-saturated and erupted at these temperatures (near water-saturated granite eutectic). Variations in key trace elements are relatively limited overall and zircons display similar REE patterns with generally curved MREE to HREE patterns and prominent negative Eu anomalies. Most of the variation is observed in zircons from older eruptions (62-41 ka). Zircon rims from Ash 17 of the Wilson Creek Formation (59 ka) have elevated Th/U, Eu/Eu*, and Ti and lower Hf compared to Ash 19 (62 ka), which suggests a thermal rejuvenation event between these two eruptions. Zircon rims from Ash 15 (41 ka) are characterized by a trend toward high Hf, at relatively low and relatively constant Ti, and low Eu/Eu*, consistent with rhyolite magma undergoing eutectic-like crystallization just prior to eruption. Zircon surfaces and interiors for the 21, 12.5, and 7 ka dome eruptions have very similar Hf, low Eu/Eu*, low Ti, and low Th/U. This requires zircon crystallization in a very uniform thermal and chemical environment from the latest Pleistocene to Holocene (a feldspar-saturated, crystal mush?).