PP11B-2238
Water Isotope Variability Across Individual Precipitation Events in Borneo

Monday, 14 December 2015
Poster Hall (Moscone South)
Christopher Bosma, Georgia Institute of Technology Main Campus, Atlanta, GA, United States, Jessica W Moerman, Georgia Inst. of Technology, Atlanta, GA, United States and Kim M Cobb, Georgia Institute of Technology Main Campus, Earth and Atmospheric Sciences, Atlanta, GA, United States
Abstract:
The composition of hydrogen and oxygen isotopes in rainwater (measured as δ18O and δD) provides vital information about current hydrological dynamics, and forms the basis for many paleoclimate reconstructions of hydroclimate variability. However, many factors – both local and remote – govern water isotope fractionation, complicating the interpretation of water isotope records. While Raleigh distillation serves as a key first-order driver of the well-noted “amount effect”, post-condensation evaporative processes are an important influence on intra-event isotope variations (e.g. Moerman, et al. 2013). To further resolve the processes driving this variability, rainwater isotopes from Gunung Mulu National Park in northern Borneo (4°N, 115 °E) were analyzed at one-minute intervals across nine rain events in 2012. To assess the influence of large-scale, remote fractionation processes versus those that act locally, our intra-event time series was compared to daily-resolved isotope records over the same time interval. We quantify a large range of water isotopic compositions over the sampling period (-13.1‰ to 0.2‰ in δ18O and -88.3‰ to -1.2‰ in δD). There is appreciable evidence for evaporative enrichment at our site, with δ18O vs. δD slopes significantly less than eight – the slope of the Global Meteoric Water Line. Large differences in the shape of the intra-event profile, ranging from monotonically increasing to “V-shaped” (e.g. Celle-Jeanton, et al. 2004) to monotonically decreasing isotopic values indicate that different precipitation regimes have a profound impact on water isotope evolution through a precipitation event. As such, we use a suite of meteorological data including in-situ observations, satellite imagery, model reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), and NOAA HYSPLIT water vapor back-trajectories to provide an interpretive framework for the observed intra-event isotopic variability. Our study demonstrates the utility of investigating the relationships between small-scale, local rainwater isotopic compositions and large-scale regional weather and climate patterns for resolving key dynamical processes driving tropical convection, in both the present and the past.