B11I-0565
Sediment Interfaces: Ecotones on a Microbial Scale
Monday, 14 December 2015
Poster Hall (Moscone South)
Matthew Ryan Borchers1, Frederick S Colwell2, Grace D'Angelo1, Andrew R Thurber3 and Michael Franklin Graw1, (1)Oregon State University, College of Earth, Ocean, and Atmospheric Science, Corvallis, OR, United States, (2)Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR, United States, (3)Oregon State University, Corvallis, OR, United States
Abstract:
Ecotones – transitions between different biomes - often support greater faunal diversity than the adjacent ecological systems. For subseafloor microorganisms, defined geological and chemical gradients have been shown to affect population sizes and community structure, but the role that sediment interfaces play is still unclear. Here, we test the hypothesis that zones of transition between two distinct sediment types increase microbial diversity and change community composition. Concurrently, we explore those factors that drive deep-subsurface microbial community structure (e.g., depth, interstitial water chemistry, methane concentrations, clay content). Samples from IODP Expedition 349 - South China Sea Tectonics – had interfaces of either ash/clay or turbidite/clay boundaries sampled , DNA extracted, and the 16S rRNA gene analyzed on an Illumina MiSeq platform. Initial analyses reveal that microbial communities in sediment samples are distinct from communities in drilling fluid, indicating that contamination is unlikely. In four of the eight complete interfaces currently analyzed we found an increase in diversity (based on the chao1 index), in certain cases doubling the diversity of the adjacent rock types. The pattern was not uniform across all interfaces. While some posit that ecotones provide a mixing of the two adjacent communities, we were surprised to find an abundance (mean = 392 OTUs) of unique microbial taxa within the ecotone itself when compared to adjacent sediment (mean=282 unique OTUs). Thus while diversity was not uniformly increased in ecotones, the interface led to divergent microbial communities that were not simply mixtures of those adjacent. We will discuss the ability of abiotic factors in explaining the among ecotone variance that we observed. Our investigation helps to characterize the factors that drive microbial community structure of the subseafloor while highlighting the need to focus on habitat heterogeneity at a scale pertinent to bacteria and archaea in studies of microbial ecology.