Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Mingjing Yu1, Bruce L Rhoads1, Alison M Anders2 and Andrew Stumpf3, (1)University of Illinois at Urbana Champaign, Urbana, IL, United States, (2)University of Illinois at Urbana Champaign, Geology, Urbana, IL, United States, (3)Illinois State Geological Survey, Champaign, IL, United States
As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored.

This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas and banks. These results suggest that floodplain erosion during high flow events contributes to the suspended sediment.