OS51A-1980
Scale Interactions by physics in a Simplified Multiscale Coupled Atmosphere-Ocean nonlinear model
Friday, 18 December 2015
Poster Hall (Moscone South)
Enver Ramirez, CPTEC Center for Weather Forecasts and Climate Research, Cachoeira Paulista, Brazil
Abstract:
A simplified multiscale model of the interactions between the atmosphere and ocean is developed. Two coupled nonlinear equatorial β-plane shallow water equations are used. The nonlinearities are of two types: advective and atmosphere-ocean coupling related. To mimic the main differences between the fast-atmosphere and the slow-ocean, multi-space and multi-time scalings are adopted. Three possible regimes have been discussed: intradiurnal/synoptic/intraseasonal (ISIn), synoptic/intraseasonal/interannual-El Niño (SInEN) and intraseasonal/El Niño/decadal (InEND) regimes. Special attention is given to the SInEN regime, where simplified physical parameterizations for the atmosphere-ocean coupling are developed. In this regime, the synoptic scale is the fastest atmospheric scale, the intraseasonal is the intermediate atmosphere-ocean coupling scale and the El Niño refers to the slowest inter-annual ocean scale. Analytical solutions of the SInEN equations reveal that the slow wave amplitude evolution depends on both types of nonlinearities. Nonlinear interactions of synoptic scale atmospheric waves force intraseasonal variability not only in the atmosphere but also in the ocean through wind stress. Intraseasonal ocean temperature perturbations coupled with the atmosphere through evaporation force higher order atmospheric variability and the wave-convection coupling provides another source of higher order atmospheric variability. In the ocean, nonlinear interactions of intraseasonal ocean perturbations force interannual oceanic variability. The slowest inter-annual variability in the SInEN regime is associated with either nonlinear wind stress and advective nonlinearity.