A33G-0256
Evaluating cloud precipitation efficiency with satellite retrievals of water isotopologues
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Adriana Bailey, University of Washington Seattle Campus, Seattle, WA, United States; Joint Institute for the Study of the Atmosphere and Ocean, Seattle, WA, United States, David C Noone, Oregon State University, College of Earth, Ocean and Atmospheric Sciences, Corvallis, OR, United States and Robert Wood, Univ Washington, Seattle, WA, United States
Abstract:
The efficiency with which clouds precipitate is believed to influence climate by modifying cloud lifetime and, ultimately, cloud amount. Aerosols can influence this linkage by reducing the effective radii of cloud droplets and suppressing precipitation. This relationship, however, is not unidirectional. Cloud precipitation efficiency can also regulate particle concentrations, since precipitation effectively scavenges aerosols from the atmosphere. One challenge in studying how aerosols, clouds, and precipitation processes interrelate is that observational constraints are difficult to attain. This work evaluates the ability of isotope ratios in water vapor to quantify cloud precipitation efficiency across the tropical and subtropical oceans. Theory suggests isotope ratios will record the precipitation efficiency of a convective plume, since heavier isotopologues precipitate preferentially; and a recent analysis of in situ measurements from the Mauna Loa Observatory (MLO, Hawaii, USA) verifies this to be the case. The challenge now lies in understanding whether satellite retrievals of isotope ratios in water vapor are sensitive enough to track precipitation efficiency globally. To answer this question, vertical profiles of the D/H ratio derived from NASA’s Tropospheric Emission Spectrometer (TES) are first compared with the MLO in situ measurements. A qualitative match indicates the satellite retrievals can distinguish high from low precipitation efficiency convection. To expand the analysis geographically, TES profiles between 40°S and 40°N are compared with estimates of precipitation efficiency derived from the Tropical Rainfall Measuring Mission (TRMM) and ECMWF’s ERA-Interim. Retrievals are binned by lower-tropospheric humidity and by vertical velocity in order to minimize large-scale thermodynamical influences. Co-located cloud retrievals provide the context necessary to evaluate the utility of these new estimates in elucidating cloud feedbacks on climate.