NH41B-1827
Landslides: Geomorphology and Sea Cliff Hazard Potential, Santa Barbara – Isla Vista, California J.F. Klath and E.A. Keller

Thursday, 17 December 2015
Poster Hall (Moscone South)
Julia F Klath, University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
Coastal areas are often characterized by high population densities in an ever changing, dynamic environment. The world’s coasts are often dominated by steeply sloping sea cliffs, the morphology of which reflects rock type, wave erosion, and surface erosion, as well as human activities such changing vegetation, urban runoff, and construction of coastal defenses. The Santa Barbara and Goleta area, with over 17 km of sea cliffs and beaches, extends from Santa Barbara Point west to the hamlet of Isla Vista. A deeper understanding of the local geology and the physical processes generating slope failure and, thus, landward cliff retreat is important for general public safety, as well as future development and planning. Our research objective includes assessment of landslide hazard potential through investigation of previous landslides and how these events relate to various physical variables and characteristics within the surrounding bedrock. How does landslide frequency, volume, and type relate to varying local bedrock and structure?

Two geologic formations dominate the sea cliffs of the Santa Barbara area: Monterey shale (upper, middle, and lower) and Monterey Sisquoc shale. Geology varies from hard cemented shale and diatomaceous, low specific gravity shale to compaction shale. Variations in landslide characteristics are linked closely to the geology of a specific site that affects how easily rock units are weathered and eroded by wave erosion, naturally occurring oil and water seeps, burnt shale events, and landslide type and frequency on steeply dipped bedding planes/daylighting beds. Naturally occurring features linked to human processes often weaken bedrock and, thus, increase the likelihood of landslides. We categorize landslide frequency, type, and triggers; location of beach access, drainage pipes, and water; and oil and tar seeps in order to develop suggestions to minimize landslide potential. Lastly, using previously published erosion cliff retreat rates and sea level rise estimates, a map displaying likely position of the coastline by 2100 will be created. This information will be useful to the county of Santa Barbara, California when considering future development and hazard mitigation plans.