P11B-2103
A Proof of Concept for In-Situ Lunar Dating

Monday, 14 December 2015
Poster Hall (Moscone South)
F. Scott Anderson1, Tom Whitaker1 and Jonathan Levine2, (1)Southwest Research Institute Boulder, Boulder, CO, United States, (2)Colgate University, Hamilton, NY, United States
Abstract:
We have obtained improved 87Rb-87Sr isochrons for the Duluth Gabbro, an analog for lunar KREEP rocks, using a prototype spaceflight laser ablation resonance ionization mass spectrometer (LARIMS). The near-side of the Moon comprises previously un-sampled, KREEP rich, young-lunar basalts critical for calibrating the <3.5 Ga history of the Moon, and hence the solar system, since 3.5 Ga. Measurement of the Duluth Gabbro is a proof of concept of lunar in-situ dating to constrain lunar history. Using a novel normalization approach, and by correcting for matrix-dependent isotope effects, we have been able to obtain a date of 1100 ± 200 Ma (Figure 1), compared to the previously established thermal ionization mass spectrometry measurement of 1096 ± 14 Ma. The precision of LARIMS is sufficient to constrain the current 1 Ga uncertainty of the lunar flux curve, allowing us to reassess the timing of peak lunar volcanism, and constrain lunar thermal evolution. Furthermore, an updated lunar flux curve has implications throughout the solar system. For example, Mars could have undergone a longer epoch of voluminous, shield-forming volcanism and associated mantle evolution, as well as a longer era of abundant volatiles and hence potential habitability. These alternative chronologies could even affect our understanding of the evolution of life on Earth: under the classic chronology, life is thought to have originated after the dwindling of bombardment, but under the alternative chronology, it might have appeared during heavy bombardment. In order to resolve the science questions regarding the history of the Moon, and in light of the Duluth Gabbro results, we recently proposed a Discovery mission called MARE: The Moon Age and Regolith Explorer. MARE would accomplish these goals by landing on a young, nearside lunar basalt flow southwest of Aristarchus that has a crater density corresponding to a highly uncertain absolute age, collecting >10 rock samples, and assessing their radioisotopic age, geochemistry, and mineralogy.