EP51A-0898
Morphometry and Geomorphic Characteristics of Large Alluvial fans and Megafans in South America

Friday, 18 December 2015
Poster Hall (Moscone South)
Moulay Anwar Sounny-Slitine, Southwestern University, Georgetown, TX, United States; University of Texas at Austin, Geography and The Environment, Austin, TX, United States, Edgardo M Latrubesse, University of Texas at Austin, Austin, TX, United States and Latrubesse Research Group
Abstract:
Alluvial megafans are ‘large’ fan-shaped bodies of sediment that form from lateral migrations of a river as it exits a topographic front. They differ from large alluvial fans (radial length between 30-100km) with sizes greater than 100-km in radial length. This study characterizes and describes megafans and large alluvial fan through morphometrics. We cataloged the fans into a geodatabase delineating size and extent of basins both upstream and downstream from the apex. Through remote sensing, elevation modeling and geomorphic mapping, we populated the database with fan morphometric measurements, qualitative descriptions and basin parameters. Metrics include planform area, catchment area, gradient, relief index, drainage density, and others. These were compared to longitudinal/transverse profiles, satellite imagery, and geomorphic maps. The database is global, however since the largest megafans of the world are located in South America, this preliminary analysis will focus on the continent. We found morphometric and characteristic differences between large alluvial fans and megafans in the region. These include difference in relationship between morphometrics, for example the ratio between catchment and fan size area. These properties of fans could be a better approach in differentiating megafans from large alluvial fans. The current criteria is an artificial scale divide, which varies in the literature, with the most common being a 100-km apex-to-toe length. Alternative values as little of 30-km apex-to-toe length have been proposed, as well as alternative metrics like coverage areas of greater than 10,000 square-km. We propose that geomorphic characteristics and morphometrics provide an intrinsic approach to differentiating megafans from larger alluvial fans.