B21G-0562
Warming Contracts Flowering Phenology in an Alpine Ecosystem

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Meredith D Jabis, University of California Berkeley, Berkeley, CA, United States, Daniel Edward Winkler, University of California Irvine, Irvine, CA, United States and Lara M Kueppers, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Abstract:
In alpine ecosystems where temperature increases associated with anthropogenic climate change are likely to be amplified, the flowering phenology of plants may be particularly sensitive to changes in environmental signals. For example, earlier snowmelt and higher temperature have been found to be important factors driving plant emergence and onset of flowering. However, few studies have examined the interactive role of soil moisture in response to warming. Using infrared heating to actively warm plots crossed with manual watering over the growing season in a moist alpine meadow at Niwot Ridge, Colorado, our preliminary results indicate that community-level phenology (length of flowering time across all species) was contracted with heating but was unaffected by watering. At the species level, additional water extended the length of the flowering season by one week for almost half (43%) of species. Heating, which raised plant and surface soil temperatures (+1.5 C) advanced snowmelt by ~7.6 days days and reduced soil moisture by ~2%, advanced flowering phenology for 86% of species. The response of flowering phenology to combined heating and watering was predominantly a heating effect. However, watering did appear to mitigate advances in end of flowering for 22% of species. The length of flowering season, for some species, appears to be tied, in part, to moisture availability as alleviating ambient soil moisture stress delayed phenology in unheated plots. Therefore, we conclude that both temperature and moisture appear to be important factors driving flowering phenology in this alpine ecosystem. The relationship between flowering phenology and species- or community-level productivity is not well established, but heating advanced community peak productivity by 5.4 days, and also reduced peak productivity unless additional water was provided, indicating some consistency between drivers of productivity and drivers of flowering phenology.