NH13C-1950
Global Hydrological Hazard Evaluation System (Global BTOP) Using Distributed Hydrological Model

Monday, 14 December 2015
Poster Hall (Moscone South)
Jun Magome, University of Yamanashi, Yamanashi, Japan and Maksym Gusyev, ICHARM International Centre for Water Hazard And Risk Management, Tsukuba, Japan
Abstract:
A global hydrological hazard evaluation system based on the BTOP models (Global BTOP) is introduced and quantifies flood and drought hazards with simulated river discharges globally for historical, near real-time monitoring and climate change impact studies. The BTOP model utilizes a modified topographic index concept and simulates rainfall-runoff processes including snowmelt, overland flow, soil moisture in the root and unsaturated zones, sub-surface flow, and river flow routing. The current global BTOP is constructed from global data on 10-min grid and is available to conduct river basin analysis on local, regional, and global scale. To reduce the impact of a coarse resolution, topographical features of global BTOP were obtained using river network upscaling algorithm that preserves fine resolution characteristics of 3-arcsec HydroSHEDS and 30-arcsec Hydro1K datasets. In addition, GLCC-IGBP land cover (USGS) and the DSMW(FAO) were used for the root zone depth and soil properties, respectively. The long-term seasonal potential evapotranspiration within BTOP model was estimated by the Shuttleworth-Wallace model using climate forcing data CRU TS3.1 and a GIMMS-NDVI(UMD/GLCF). The global BTOP was run with globally available precipitation such APHRODITE dataset and showed a good statistical performance compared to the global and local river discharge data in the major river basins. From these simulated daily river discharges at each grid, the flood peak discharges of selected return periods were obtained using the Gumbel distribution with L-moments and the hydrological drought hazard was quantified using standardized runoff index (SRI). For the dynamic (near real-time) applications, the global BTOP model is run with GSMaP-NRT global precipitation and simulated daily river discharges are utilized in a prototype near-real time discharge simulation system (GFAS-Streamflow), which is used to issue flood peak discharge alerts globally. The global BTOP system and GFAS-Streamflow sites may be used to introduce a combined flood and drought hazard monitor to close the gap between local and global scale hazard assessments and support the International Flood Initiative (IFI) Flagship Project, which aims to support benchmarking flood risk reduction at global, national and local levels.