V24C-04
The Oldest Known Caldera Associated with the Yellowstone Hotspot: New Geologic Mapping, Geochemistry, and 40Ar/39Ar Geochronology for the Northern McDermitt Volcanic Field, Northern Nevada and Southeastern Oregon

Tuesday, 15 December 2015: 16:45
310 (Moscone South)
Thomas R Benson and Gail Ann Mahood, Stanford University, Stanford, CA, United States
Abstract:
McDermitt Volcanic Field (MVF) of Nevada and Oregon is one of three major caldera centers associated with Mid-Miocene Steens/Columbia River flood basalts. Pioneering geologic mapping of MVF by Rytuba and McKee (1984) and subsequent work established four main ignimbrites within the field. Our new 40Ar/39Ar ages (FCT=28.02 Ma) are 16.41±0.02 (±2σ) Ma for Tuff of Oregon Canyon, 16.35±0.04 Ma for Tuff of Trout Creek Mountains, 16.30±0.04 Ma for Tuff of Long Ridge, and 15.56±0.08 Ma for Tuff of Whitehorse Creek. We have mapped two previously unrecognized overlapping calderas that we interpret as sources for Tuff of Oregon Canyon and Tuff of Trout Creek. These ~20-km diameter calderas lie north of the well-known McDermitt Caldera; a smaller 7-km caldera that formed on eruption of the Tuff of Whitehorse Creek is nested within them. Argon ages and geochemistry of alkali rhyolite lava domes in the northern MVF define two populations: ~16.6-16.3 Ma associated with the newly recognized calderas, and ~15.5-15.3 Ma outlining the margins of the younger Whitehorse Caldera.

Consistent with both ignimbrites erupting from the same evolving magma system, the high-silica alkali rhyolite Tuff of Oregon Canyon lies on compositional trends defined by the Tuff of Trout Creek, which is zoned from a moderately crystal-rich high-silica alkali rhyolite to a strongly porphyritic low-silica alkali rhyolite. They both are distinguished from the Tuff of Long Ridge from McDermitt Caldera by their higher Zr/Rb, and relatively high FeO* concentrations distinguish all MVF ignimbrites from ignimbrites from the nearby High Rock Caldera Complex, where the oldest caldera formed on eruption of the Idaho Canyon Tuff at 16.38±0.02 Ma (Coble and Mahood, in review).

The Tuff of Trout Creek rests conformably on the Tuff of Oregon Canyon west and southwest of the calderas, where they overlie a thick stack of Steens Basalt lavas. To the east and southeast the two ignimbrites are separated by as much as ~100m of Steens Basalt and ~150m of overlying trachyte lavas. Intrusion beneath the caldera of magma that continued to erupt elsewhere as mafic to intermediate lavas may have rejuvenated the Oregon Canyon magma chamber, which ultimately led to eruption of the Tuff of Trout Creek ~100 ky later.