EP34B-08
Computer Simulations of Deltas with Varying Fluvial Input and Tidal Forcing
Abstract:
Deltas are important depositional systems because many large hydrocarbon reservoirs in the world today are found in delta deposits. Deltas form when water and sediments carried by fluvial channels are emptied to an open body of water, and form delta shaped deposits. Depending on the relative importance of the physical processes that controls the forming and the growth of deltas, deltas can often be classified into three different types, namely fluvial, tidal and wave dominated delta. Many previous works, using examples from modern systems, tank experiments, outcrops, and 2 and 3D seismic data sets, have studied the shape, morphology and stratigraphic architectures corresponding to each of the deltas’ types. However, few studies have focused on the change of these properties as a function of the relative change of the key controls, and most of the studies are qualitative.Here, using computer simulations, the dynamics of delta evolutions under an increasing amount of tidal influences are studied. The computer model used is fully based on the physics of fluid flow and sediment transport. In the model, tidal influences are taken into account by setting proper boundary conditions that varies both temporally and spatially. The model is capable of capturing many important natural geomorphic and sedimentary processes in fluvial and tidal systems, such as channel initiation, formation of channel levees, growth of mouth bars, bifurcation of channels around channel mouth bars, and channel avulsion. By systematically varying tidal range and fluvial input, the following properties are investigated quantitatively: (1) the presence and the form of tidal beds as a function of tidal range, (2) change of stratigraphic architecture of distributary channel mouth bars or tidal bars as tidal range changes, (3) the transport and sorting of different grainsizes and the overall facie distributions in the delta with different tidal ranges, and (4) the conditions and locations of mud drapes with different magnitude of tidal forcing.