EP53B-1009
Tracing bed load sediment using PIT tags in a steep headwater channel.

Friday, 18 December 2015
Poster Hall (Moscone South)
Yoshiki Kubo, Tokyo University of Agriculture and Technology, Tokyo, Japan
Abstract:
Bed load transport in steep headwater channels is complex because of the particle size distribution, topography, channel roughness, and sediment supply from adjacent hillslope. We monitored movement bed load sediment using PIT tags in a steep headwater channel segments. Study area is located in 7.0ha Oobora-sawa observatory from 50km west of Tokyo metropolitan. Annual precipitation is 3000mm and mean temperature is 10°. Annual bed load sediment yields in the study catchment was from 6.5 to 7.6 t/ha/yr. Mean channel gradient is 24° with 0.5m low flow width. The channel is consisted by 0.2 to 1.6m interval of step-pool sequences. Based on pebble count method, D10, D50 and D90 of channel substrate were 8, 28 and 206mm respectively. We deployed 134 bed load tracers with five classes of diameter ranges (Class1:17.7, Class2:24.8, Class3:35.8, Class4:54.1 and Class5:83.8mm). Selected tracers represented from D20 to D77 of channel bed substrates. PIT tags (diameter 2mm, length 9mm and weight 0.1g) were placed into the particles by drilling and refilled with non-corrosive epoxy. We investigated the movement of bed load tracers every major storm event since February 2015. Channel morphology was measured using photographic survey and topographic model was developed using software of Surface from motion (PhotoScan). Mean bed load movement in the 5 storm event with 438 mm total and 33 mm maximum intensity was 168 mm. Then 51 mm of bed load movement occurred in 43 mm total and 16 mm intensity of rainfall. Recurrence interval of the two storm event was 1 and 4 year respectively. Receivable rates of bed load tracers was 70 and 74 % in the two events. Mobilized bed load (7 to 18%) deposited at cascade, pool and riffle, and among step clusters. Mobilized bed load tracers is rather random and we do not find any patterns for particle size for the movement and distance. Our field monitoring showed that bed load tracers were not mobilized for storm events with 10.5mm/h intensity of rainfall. The intermittency of movement of bed load was also observed in the sediment ponds at catchment outlets.