P21B-07
The Interior of Enceladus from Gravity and Topography
Abstract:
The combination of gravity and topography has been the method of choice to obtain quantitative information on the interior of Enceladus, but its application was challenging because of the small mass of the moon and the short gravitational interaction time with the Cassini spacecraft. The main observable quantity used in the estimation of the gravity field was the spacecraft range rate, measured by the antennas of NASA’s Deep Space Network to an accuracy of about 0.03 mm/s (at 60 s integration time). In spite of these challenges and thanks to the careful design of three gravity flybys, Cassini was able to catch the essential features of Enceladus’s gravity field, in particular to estimate its quadrupole and detect the sought-for hemispherical asymmetry [1]. Crucial for the correct fit of the Doppler data was the inclusion in the dynamical model of the drag acceleration from the plume’s neutral particles.Although the largest quadrupole coefficients indicate only a mild deviation from hydrostatic equilibrium (J2/C22=3.55±0.05), a reliable determination of the MOIF uses J3 to separate the hydrostatic and non-hydrostatic components of the quadrupole field. The application of this method results in a MOIF (0.336) compatible with a differentiated structure. (An admittance analysis leads to a similar value.) The magnitude and the sign of J3 indicate that the gravity anomaly associated to the striking topographic depression (-1 km) in the southern polar regions is largely compensated by denser material at depth. The obvious (but not the only) interpretation points to a liquid water mass, denser than the surrounding ice and sandwiched between the ice shell and the rocky core. The gravity field and the topography provide also rough estimate of the size of the water mass and the depth at which it is located. Starting from the consideration that the hydrostatic J2/C22 ratio for a fast rotator like Enceladus is about 3.25 and not 10/3, a recent work [2] offers some adjustments to this picture.
[1] L. Iess, D.J. Stevenson, et al.: “The Gravity Field and Interior Structure of Enceladus”, Science, 344, 78-80 (2014) DOI: 10.1126/science.1250551
[2] W.B. McKinnon: “Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity”, GRL, 42, 2137–2143 (2015) DOI:10.1002/2015GL063384