NG33A-1848
Classifying Multi-year Land Use and Land Cover using Deep Convolutional Neural Networks
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Bumsuk Seo, Seoul National University, Asian Institute for Energy, Environment & Sustainability, Seoul, South Korea
Abstract:
Cultivated ecosystems constitute a particularly frequent form of human land use. Long-term management of a cultivated ecosystem requires us to know temporal change of land use and land cover (LULC) of the target system. Land use and land cover changes (LUCC) in agricultural ecosystem is often rapid and unexpectedly occurs. Thus, longitudinal LULC is particularly needed to examine trends of ecosystem functions and ecosystem services of the target system. Multi-temporal classification of land use and land cover (LULC) in complex heterogeneous landscape remains a challenge. Agricultural landscapes often made up of a mosaic of numerous LULC classes, thus spatial heterogeneity is large. Moreover, temporal and spatial variation within a LULC class is also large. Under such a circumstance, standard classifiers would fail to identify the LULC classes correctly due to the heterogeneity of the target LULC classes. Because most standard classifiers search for a specific pattern of features for a class, they fail to detect classes with noisy and/or transformed feature data sets. Recently, deep learning algorithms have emerged in the machine learning communities and shown superior performance on a variety of tasks, including image classification and object recognition. In this paper, we propose to use convolutional neural networks (CNN) to learn from multi-spectral data to classify agricultural LULC types. Based on multi-spectral satellite data, we attempted to classify agricultural LULC classes in Soyang watershed, South Korea for the three years’ study period (2009-2011). The classification performance of support vector machine (SVM) and CNN classifiers were compared for different years. Preliminary results demonstrate that the proposed method can improve classification performance compared to the SVM classifier. The SVM classifier failed to identify classes when trained on a year to predict another year, whilst CNN could reconstruct LULC maps of the catchment over the study period. Our results show that the new deep learning algorithms can improve learning from multi-temporal ground truth data sets. The findings of the study can be useful to studies focusing on multi-temporal LULC classification.