T23A-2910
Depositional Record of the Bagua Basin, Northern Peru: Implications for Climate and Tectonic Evolution of Tropical South America

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Federico Moreno1, Sarah W.M. George2, Lauren Alexandra Williams1, Brian K Horton3 and Carmala N Garzione4, (1)University of Rochester, Rochester, NY, United States, (2)University of Texas at Austin, Austin, TX, United States, (3)University of Texas at Austin, Department of Geological Sciences and Institute for Geophysics, Austin, TX, United States, (4)University of Rochester, Department of Earth and Environmental Sciences, Rochester, NY, United States
Abstract:
The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South America.