GC13C-1177
Comparing Several Algorithms for Change Detection of Wetland

Monday, 14 December 2015
Poster Hall (Moscone South)
Fengqin Yan1, Shuwen Zhang2 and Liping Chang1, (1)CAS Chinese Academy of Sciences, Beijng, China, (2)Chinese Academy of Sciences, Beijing, China
Abstract:
As “the kidneys of the landscape” and “ecological supermarkets”, wetland plays an important role in ecological equilibrium and environmental protection.Therefore, it is of great significance to understand the dynamic changes of the wetland. Nowadays, many index and many methods have been used in dynamic Monitoring of Wetland. However, there are no single method and no single index are adapted to detect dynamic change of wetland all over the world. In this paper, three digital change detection algorithms are applied to 2005 and 2010 Landsat Thematic Mapper (TM) images of a portion of the Northeast China to detect wetland dynamic between the two dates. The change vector analysis method (CVA) uses 6 bands of TM images to detect wetland dynamic. The tassled cap transformation is used to create three change images (change in brightness, greenness, and wetness). A new method--- Comprehensive Change Detection Method (CCDM) is introduced to detect forest dynamic change. The CCDM integrates spectral-based change detection algorithms including a Multi-Index Integrated Change Analysis (MIICA) model and a novel change model called Zone, which extracts change information from two Landsat image pairs. The MIICA model is the core module of the change detection strategy and uses four spectral indices (differenced Normalized Burn Ratio (dNBR), differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) and a new index called the Relative Change Vector Maximum (RCVMAX)) to obtain the changes that occurred between two image dates. The CCDM also includes a knowledge-based system, which uses critical information on historical and current land cover conditions and trends and the likelihood of land cover change, to combine the changes from MIICA and Zone. Related test proved that CCDM method is simple, easy to operate, widely applicable, and capable of capturing a variety of natural and anthropogenic disturbances potentially associated with land cover changes on different landscapes. However, this method has not been used in other country and wetland dynamic detection. In this study, we introduce CCDM method to check its efficiency in detecting wetland dynamic in the Northeast China and compared with traditional method (the change vector analysis and the tassled cap transformation ).