A41A-0035
Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

Thursday, 17 December 2015
Poster Hall (Moscone South)
Ho-Jin Lim, Kyungpook National University, Daegu, South Korea
Abstract:
Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (<5% RH) of room temperature (~25oC) in ~8 m3 KNU smog chamber. SOA was collected on Teflon-coated glass fiber filter, which was extracted using acetonitrile and analyzed by ultrahigh resolution 15T FT-ICR MS. UHR MS data were interpreted in various ways including molecular formula, Kendrick diagram, van Krevelen diagram, and double bond equivalent values. Substantially large fractions of them are nitrogen containing species. Thousands of individual species of SOA were identified. For SOA in the absence of NOx. intensity normalized mean O/C, H/C, N/C, OM/OC ratios were 0.43, 1.52, 0.02, and 1.68, respectively. For SOA in the presence of NOx, those ratios were 0.52, 0.95, 0.08, and 1.48, respectively. 4 different oligomer formation mechanisms (addition, H abstraction, hydrolysis and de-hydrolysis reaction) were examined on the basis of SOA compositions. Detailed discussion will be presented on the molecular structure and building block of oligomers in SOA as well as the evolution of individual elemental composition by multi-generation reactions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-01350000).