PA23C-04
Intriguing Connections Between Economic Geology, the Environment, Human Health, and Disasters: Observations from my Career(s) in Transdisciplinary Science

Tuesday, 15 December 2015: 14:25
103 (Moscone South)
Geoffrey S Plumlee, U.S. Geological Survey, Denver, CO, United States
Abstract:
I have been fortunate to be able to follow a varied career path from economic geology, to environmental geochemistry, to geochemistry and human health, to environmental disasters. I have been privileged to collaborate with many exceptional scientists from across and well beyond the earth sciences (e.g., public heath, engineering, economics, emergency response, microbiology). Much of this transdisciplinary work has intriguing links back to economic geology/geochemistry. Geological characteristics of different ore deposit types predictably influence the environmental and health impacts of mining, and so can help anticipate and prevent adverse impacts before they occur. Geologic maps showing potential for natural occurrences of asbestos or erionite are analogous to permissive tract maps used for mineral-resource assessments, and can be correlated with epidemiological data to help understand whether living on or near such rocks poses a risk for developing asbestos-related diseases. Mineral particles that are taken up by the human body along inhalation or incidental ingestion exposure routes are “weathered” by reactions with diverse body fluids that differ greatly in composition between and along the different exposure routes. These in vivo chemical reactions (e.g., dissolution, alteration, metal complexation, oxidation/reduction, reprecipitation) are in ways analogous to processes of ore deposit formation and weathering, and some can be shown (in collaboration with toxicologists) to play a role in toxicity. Concepts of ore petrography and paragenesis can be applied to interpret (in collaboration with pathologists) the origin, physiological implications, and toxicity effects of mineral matter in human tissue samples obtained by biopsy, transplant or autopsy. Some disaster materials can originate from mining- or mineral-processing sources, and methods originally developed to study ore deposits or mining-environmental issues can also be applied to understand many disaster materials. These examples illustrate an appropriate core role for earth scientists in transdisciplinary research: applying our expertise and toolkits to help understand topics well beyond earth sciences, but doing so in collaboration with experts from disciplines that traditionally examine those topics.