P33A-2127
THE PRESERVATION OF ORGANIC MATTER AND ITS SIGNATURES AT EXPERIMENTAL LAVA FLOW INTERFACES: IMPLICATIONS FOR MARS

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Christopher K Junium, Syracuse University, Syracuse, NY, United States
Abstract:
The oxidizing nature of Martian soils suggests that the preservation of organic molecules or any direct evidence for life at the surface may not be possible. Future rover missions will need to focus on a variety localitions including those that provide the best possibility for the preservation of organic matter. Volcanic glass and basalt flow surfaces are favored environments for microbial colonization on Earth and this may have been similar on an early Mars. Trace metals and nutrients from easily weathered surface would have provided nutrients as well as substrates for chemolithoautotrophs. In regions of igneous activity, successive flows could overrun microbial communities, trapping potential organic signatures between flows.

Here we present experimental evidence for the preservation of organic matter between lava flows and that flow interfaces may be excellent sites for exploratory efforts in the search for Martian biosignatures. We performed a series of experiments using the infrastructure of the Syracuse Lava Project that allows for natural-scale lava flows of up to several hundred kilograms. We subjected cyanobacterial organic matter to overrun by lava under a variety of conditions. In all cases organic matter was preserved between lava flows as chars on the overrun ‘colonized” lava and as thin shiny carbon coatings on the overriding flow. The carbon coatings are likely the result of rapid heating and pyrolysis of organic matter that sears to the underside of the overriding lava. Controls yielded no positive signatures for organic matter.

We also tested the degree to which the organic matter could be detected remotely using technologies that are found on the Mars Science Laboratory or planned for future missions. We employed elemental and stable isotopes analysis, and Raman spectroscopy. Elemental analysis demonstrated that organic carbon and nitrogen remain in the charred material and that the carbon and nitrogen isotopes of the chars do not deviate significantly from the precursor organic matter (-24.3‰ cyanobacterial biomass; -24.2‰ black carbon). Raman spectroscopy revealed spectra for black carbon, even from the thinnest carbon coatings on overriding lava surfaces. These findings demonstrate that if organic matter is preserved beneath lava flows it may be readily detectable.