A53A-0370
Solar Occultation Constellation for Retrieving Aerosols and Trace Element Species (SOCRATES): Proposed Mission Concept

Friday, 18 December 2015
Poster Hall (Moscone South)
Scott Martin Bailey, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States and Larry L Gordley, GATS, Inc., Newport News, VA, United States
Abstract:
The goal of SOCRATES is to resolve the critical but underexplored role of the upper troposphere/lower stratosphere (UTLS) in climate change. The mission would provide the suite of measurements required to quantify UTLS transport pathways and their contribution to UTLS composition, and to evaluate the radiative forcing implications of changes in UTLS composition forced by expected changes in these pathways as the climate evolves. The discrimination and quantification of UTLS transport pathways requires simultaneous measurement of several key trace gases and aerosols with high precision, accuracy, and vertical resolution. Furthermore, aerosols and clouds, often present in the UTLS, complicate the measurement of trace gases. The SOCRATES sensor is a 23-channel Gas Filter Correlation Radiometer (GFCR), referred to as GLO (GFCR Limb solar Occultation), with heritage from HALOE on UARS, and SOFIE on AIM. GLO measures aerosol extinction from 0.45 to 3.88 µm, important radiatively active gases in the UTLS (H2O, O3, CH4, N2O), key tracers of UTLS transport (HCN, CO, HDO), gases important in stratospheric O3 chemistry (HCl and HF), and temperature from cloud top to 50 km at a vertical resolution of < 1 km. Improved pointing knowledge will provide dramatically better retrieval precision in the UTLS, even in the presence of aerosols, than possible with HALOE. In addition, the GLO form factor is only of order 10% of that of HALOE, and costs for a constellation of GLO sensors is within the cost cap of a NASA Earth Venture mission. The SOCRATES mission concept is a 6-element constellation of autonomous small satellites, each mated with a GLO sensor, and deployed from a single launch vehicle. The SOCRATES/GLO approach reaps the advantages of solar occultation: high precision and accuracy; robust calibration; and high vertical resolution, while mitigating the sparse coverage of a single solar occultation sensor. We present the SOCRATES science case, and key elements of the SOCRATES mission and GLO instrument concepts.