PP31C-2267
Climate Reconstructions of the Younger Dryas: An ELA Model Investigating Variability in ELA Depressions, Temperature, and Precipitation Changes for the Graubϋnden Alps

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Durban G Keeler, Brigham Young University, Provo, UT, United States
Abstract:
The high sensitivity of mountain glaciers to even small perturbations in climate, combined with a near global distribution, make alpine glaciers an important target for terrestrial paleoclimate reconstructions. The geomorphic remnant of past glaciers can yield important insights into past climate, particularly in regions where other methods of reconstruction are not possible. The quantitative conversion of these changes in geomorphology to a climate signal, however, presents a significant challenge. A particular need exists for a versatile climate reconstruction method applicable to diverse glacierized regions around the globe. Because the glacier equilibrium line altitude (ELA) provides a more explicit comparison of climate than properties such as glacier length or area, ELA methods lend themselves well to such a need, and allow for a more direct investigation of the primary drivers of mountain glaciations during specific events. Here, we present an ELA model for quantifying changes in climate based on changes in glacier extent, while accounting for differences in glacier width, glacier shape, bed topography, ice thickness, and glacier length. The model furthermore provides bounds on the ΔELA using Monte Carlo simulations. These methods are validated using published mass balances and ELA measurements from 4 modern glaciers in the European Alps. We then use this ELA model, combined with a surface mass and energy balance model, to estimate the changes in temperature/precipitation between the Younger Dryas (constrained by 10Be surface exposure ages) and the present day for three glacier systems in the Graubϋnden Alps. Our results indicate an ELA depression in this area of 257 m ±45 m during the Younger Dryas (YD) relative to today. This corresponds to a 1.3 °C ±0.36 °C decrease in temperature or a 156% ±30% increase in precipitation relative to today. These results indicate the likelihood of a predominantly temperature-driven change rather than a strong dependence on precipitation. We apply these same methods to additional areas around the globe to obtain preliminary, self-consistent estimates of temperature/precipitation for multiple regions. These methods and results enhance our understanding of the global and regional patterns in the climate system during the YD.