P22A-05
Mesoscale Modeling of Water Vapor and Dust in Valles Marineris: Atmospheric Influences on Recurring Slope Lineae.
Abstract:
Extensive recurring slope lineae (RSL) activity has been detected in Valles Marineris on Mars and coincides with regions where water ice fogs appear [1]. The origin of the water driving RSL flow is not well understood, but observational evidence suggests atmospheric processes play a crucial role [2]. Provided the atmospheric vapor concentration is high enough, water ice fogs can form overnight if the surface temperature cools below the condensation temperature. Correlations between dust storms and flow rates suggest that atmospheric dust opacity, and its influence on air temperature, also has a significant effect on RSL activity.We investigate planetary boundary layer processes that govern the hydrological cycle and dust cycle on Mars using a mesoscale atmospheric model to simulate the distribution of water and dust with respect to regional atmospheric circulations. Our simulations in Valles Marineris show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside. For a well-mixed atmosphere, this temperature structure indicates that when the atmosphere inside the canyon is saturated and fog is present within Valles Marineris, fog and low-lying clouds should also be present on the cooler surrounding plateaus as well. However, images taken with the Mars Express High Resolution Stereo Camera (HRSC) show instances where water ice fog appeared exclusively inside the canyon. These results have important implications for the origin and concentration of water vapor in Valles Marineris, with possible connections to RSL. The potential temperatures from our simulations show a high level of stability inside the canyon produced dynamically by sinking air. However, afternoon updrafts along the canyon walls indicate that over time, water vapor within the chasm would escape along the sides of the canyon. Again, this suggests a local source or mechanism to concentrate water vapor is needed to explain the fog phenomenon appearing within the confines of the canyon in Valles Marineris.
[1] Möhlmann et al. (2009) Planet Space Sci. 57, 1987-1992. [2] McEwen et al. (2015) EPSC abstract. Vol. 10, 786-1.