GC53E-1257
CORRELATING FLIGHT BEHAVIOR AND RADAR MEASUREMENTS FOR SPECIES BASED CLASSIFICATION OF BIRD RADAR ECHOES FOR WIND ENERGY SITE ASSESSMENT

Friday, 18 December 2015
Poster Hall (Moscone South)
Sheila P Werth and Stephen J Frasier, University of Massachusetts Amherst, Electrical and Computer Engineering, Amherst, MA, United States
Abstract:
Wind energy is one of the fastest-growing segments of the world energy market, offering a clean and abundant source of electricity. However, wind energy facilities can have detrimental effects on wildlife, especially birds and bats. Monitoring systems based on marine navigation radar are often used to quantify migration near potential wind sites, but the ability to reliably distinguish between bats and different varieties of birds has not been practically achieved. This classification capability would enable wind site selection that protects more vulnerable species, such as bats and raptors. Flight behavior, such as wing beat frequency, changes in speed, or changes in orientation, are known to vary by species [1]. The ability to extract these properties from radar data could ultimately enable a species based classification scheme. In this work, we analyze the relationship between radar measurements and bird flight behavior in echoes from avifauna.

During the 2014 fall migration season, the UMass dual polarized weather radar was used to collect low elevation observations of migrating birds as they traversed through a fixed antenna beam. The radar was run during the night time, in clear-air conditions. Data was coherently integrated, and detections of biological targets exceeding an SNR threshold were extracted. Detections without some dominant frequency content (i.e. clear periodicity, potentially the wing beat frequency) were removed from the sample in order to isolate observations suspected to contain a single species or bird. For the remaining detections, measurements including the polarimetric products and the Doppler spectrum were extracted at each time step over the duration of the observation.

The periodic and time changing nature of some of these different measurements was found to have a strong correlation with flight behavior (i.e. flapping vs. gliding behavior). Assumptions about flight behavior and orientation were corroborated through scattering simulations of birds in flight. The presence of a strong correlation between certain radar measurements and flight behavior would suggest the potential for a broad, species based avian classification algorithm. Such a classification scheme could ultimately help select and monitor wind sites in order to minimize harm to at-risk bird and bat species.