B11A-0417
Satellites Based Annual Carbon Dynamics of Africa Tropical Vegetation During the 2003-2014 Period

Monday, 14 December 2015
Poster Hall (Moscone South)
Alessandro Baccini, Woods Hole Research Center, Falmouth, MA, United States
Abstract:
Tracking terrestrial carbon fluxes and predicting how tropical forests will respond to continuous global change requires accurate estimates of annual changes in the density and distribution of carbon stocks at local to global scales. Existing evidence for tropical forests as a carbon sink is based on a limited number of repeated field measurements (Phillips et al. 1998,Lewis et al. 2009, Brienen et al. 2015), while spatially explicit estimates over large areas are limited to emissions derived from deforestation without being able to account for degradation and gain (Harris et al. 2012, Hansen et al. 2013). Here we use 12 years (2003-2014) of satellite data to quantify wall-to-wall annual net changes in aboveground carbon density, showing that Africa tropical forests are a net carbon source on the order of 72.1 ± 32.9 Tg C yr-1. This net release of carbon consists of losses of 205.0 ± 24.7 Tg C yr1 and gains of -132.9 ± 19.3 Tg C yr1. The net gains result from forest growth; net losses result from both reductions in forest area due to deforestation and in biomass density within forests due to degradation; this last accounting overall for 68.9 % of the losses. We anticipate several advantages over the traditional estimates. It measures carbon lost from forest degradation as well as from deforestation. It measures the gains of carbon in forest growth. Data are available to determine annual changes with associated uncertainty. The approach focuses directly on changes in carbon. While global emissions from fossil fuel stabilized in 2014 for the first time in the past 40 years, results from this study indicate that the annual rate of emissions from tropical forests has tended upward over the latest years of the 2003-2014 period.