GC34B-03
Simulations of Future Heat stress in the Northeast in a Convection Resolving Model

Wednesday, 16 December 2015: 16:30
3003 (Moscone West)
Matthew Huber, University of New Hampshire Main Campus, Durham, NH, United States
Abstract:
Heat stress is a chiefly a byproduct of temperature and humidity extremes and can be phrased in terms of wetbulb or dewpoint temperature. Consequently, it is a buoyancy related atmospheric variable which could alternatively be expressed as something like subcloud layer entropy or convective available potential energy (CAPE). Expressed in this latter way, predicting heat stress extreme events is equivalent to understanding the distribution of events in which convection is inhibited. Our goal in this study is to use a convection resolving model (the Weather Research and Forecasting Model at 3km grid spacing) to predict heat stress in future climate scenarios. The primary benefit relative to simply using a global climate model output is the removal of the ad hoc treatment of convective inhibition imposed by parameterization of convection in course resolution simulations. We focus on heat stress metrics relevant for humans and livestock within the Northeast of the U.S. and demonstrate the difference in projected heat stress engendered by explicitly resolving convection.