EP43A-0964
Environmental Sequencing of Biotic Components of Dust in the Chihuahuan Desert

Thursday, 17 December 2015
Poster Hall (Moscone South)
Elizabeth Walsh1, Thomas E Gill2, Jose Alfredo Rivas Jr.1, Ming-Ying Leung1 and Jon Mohl1, (1)University of Texas at El Paso, El Paso, TX, United States, (2)University of Texas at El Paso, Geological Sciences / Environmental Science and Engineering Program, El Paso, TX, United States
Abstract:
A growing number of studies mark the role of wind in dispersing biota. Most of these approaches have used traditional methods to assess taxonomic diversity. Here we used next generation sequencing to characterize microbiota in dust collected from the Chihuahuan Desert. Atmospheric dust was collected during events during 2011-2014 using dry deposition collectors placed at two sites in El Paso Co., TX. In parallel experiments, we rehydrated subsamples of dust and conducted PCR amplifications using conserved primers for 16S and 18S ribosomal genes. Sequenced reads were de-multiplexed, quality filtered, and processed using QIIME. Taxonomy was assigned based on pairwise identity using BLAST for microbial eukaryotes. All samples were rarefied to a set number of sequences per sample prior to downstream analyses. Bioinformatic analysis of four of the dust samples yielded a diversity of biota, including zooplankton, bacteria, fungi, algae, and protists, but fungi predominate (>90% of both 10K and 3K reads). In our rehydrations of dust samples from the U.S. southwest nematodes, gastrotrichs, tardigrades, monogonont and bdelloid rotifers, branchiopods and numerous ciliates have been recovered. Variability in genetic diversity among samples is based, in part, on the source and extent of the particular dust event. We anticipate the same patterns will be seen in the complete data set. These preliminary results indicate that wind is a major transporter of not only fungi, bacteria and other unicellular organisms but may also be important in shaping the distribution patterns of multi-cellular organisms such as those that inhabit aquatic environments in the arid southwestern US.