EP51B-0918
Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

Friday, 18 December 2015
Poster Hall (Moscone South)
Michael J Starek1, Chuyen T Nguyen2, James C Gibeaut3 and Alistair Lord3, (1)Texas A & M University Corpus Christi, School of Engineering and Computing Sciences, Corpus Christi, TX, United States, (2)Texas A & M University Corpus Christi, Corpus Christi, TX, United States, (3)Harte Research Institute for Gulf of Mexico Studies at TAMU-CC, Corpus Christi, TX, United States
Abstract:
The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (< 1 cm/year), they provide a single-point measurement construed to a location with limited to no information on the spatial pattern in marsh elevation response away from the measurement site. Terrestrial Laser Scanning (TLS) offers potential for high definition monitoring of marsh surface evolution. However, several challenges must be overcome in the application of the technology for geodetic imaging of marsh surfaces. These challenges include surface occlusion by dense vegetation, error propagation due to scan co-registration and referencing across time, impacts of scan angle, and filtering of non-ground points.

Researchers at Texas A&M University-Corpus Christi conducted a field-survey of a marsh within the Grand Bay National Estuarine Research Reserve using TLS and RTK GPS for comparison. Grand Bay in Mississippi USA is one of the most biologically productive estuarine ecosystems in the Gulf of Mexico. The study region is covered by dense and tall saw-grass that makes it a challenging environment for bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed TLS survey protocol and data processing workflow, details on waveform and multi-echo approaches for ground point detection, and a discussion on error analysis and challenges for measuring marsh surface elevation with TLS.