S43B-2786
An Integrated Approach for the Large-Scale Simulation of Sedimentary Basins to Study Seismic Wave Amplification
Abstract:
Seismic hazard assessment to predict the behavior of infrastructures subjected to earthquake relies on ground motion numerical simulation because the analytical solution of seismic waves is limited to only a few simple geometries. Recent advances in numerical methods and computer architectures make it ever more practical to reliably and quickly obtain the near-surface response to seismic events. The key motivation stems from the need to access the performance of sensitive components of the civil infrastructure (nuclear power plants, bridges, lifelines, etc), when subjected to realistic scenarios of seismic events.We discuss an integrated approach that deploys best-practice tools for simulating seismic events in arbitrarily heterogeneous formations, while also accounting for topography. Specifically, we describe an explicit forward wave solver based on a hybrid formulation that couples a single-field formulation for the computational domain with an unsplit mixed-field formulation for Perfectly-Matched-Layers (PMLs and/or M-PMLs) used to limit the computational domain. Due to the material heterogeneity and the contrasting discretization needs it imposes, an adaptive time solver is adopted. We use a Runge-Kutta-Fehlberg time-marching scheme that adjusts optimally the time step such that the local truncation error rests below a predefined tolerance. We use spectral elements for spatial discretization, and the Domain Reduction Method in accordance with double couple method to allow for the efficient prescription of the input seismic motion.
Of particular interest to this development is the study of the effects idealized topographic features have on the surface motion when compared against motion results that are based on a flat-surface assumption. We discuss the components of the integrated approach we followed, and report the results of parametric studies in two and three dimensions, for various idealized topographic features, which show motion amplification that depends, as expected, on the relation between the topographic feature’s characteristics and the dominant wavelength. Lastly, we report results involving three-dimensional simulations.