DI43A-2601
How Many Exoplanets Does it Take to Constrain the Origin of Mercury?
Thursday, 17 December 2015
Poster Hall (Moscone South)
Leslie Rogers, University of California Berkeley, Berkeley, CA, United States; University of Chicago, Chicago, IL, United States
Abstract:
The origin of Mercury’s enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate, physical, and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury (Rappaport et al. 2013). In contrast, Dressing et al. (2015) have noted that, to date, all confirmed transiting small (< 1.6 Earth-radius) exoplanets with masses measured to better than 20% precision have mean densities that are consistent with Earth-like bulk compositions, though significant compositional dispersion is also admitted within the observational uncertainties. This presentation will describe the application of hierarchical Bayesian models to constrain the underlying distribution of rocky exoplanet iron contents from a sample of noisy mass-radius measurements coupled to rocky planet interior structure models. In addition to deriving constraints on the distribution of iron-enhanced exo-Mercuries from the exoplanet mass-radius measurements in hand, we also apply this approach to simulated data sets to predict how the constraints should improve as increasing numbers of exoplanets are characterized. The work outlines an observational pathway toward using exoplanets to place Mercury into context.