MR32A-09
The Identity of Hydrous Defects Controlling the Rheology of Olivine

Wednesday, 16 December 2015: 11:56
301 (Moscone South)
Ulrich Faul, Massachusetts Institute of Technology, Cambridge, MA, United States
Abstract:
The reduction of the creep strength of minerals due to the presence of water is well established. The nature of the relevant hydrous defect(s) is perhaps less well understood. Standard treatments examine intrinsic defects of a pure crystal, but impurity-related defects are not usually considered. Natural olivine contains monovalent (Na) and trivalent (e.g. Al) trace elements in concentrations that exceed the concentration of intrinsic defects by up to an order of magnitude. They therefore are potentially important as agents for water-weakening. Hydrated defects - both intrinsic and impurity-related – systematically affect infrared absorption spectra, which can therefore be used for their identification and quantification. Experiments with olivine in contact with a range of buffer assemblages (e.g. MgO and enstatite) have shown that the infrared spectra of natural olivine can only be reproduced experimentally in the presence of titanium. Doping with a range of trivalent cations shows systematics in the infrared spectra related to the ionic radius of the dopants, confirming that the spectra are sensitive to the bonding environment and can be used to identify particular defects. To investigate the relationship between hydrous, titanium-related defects and creep strength we conducted deformation experiments on synthetic Fo90 olivine that was buffered by enstatite and doped with titanium. The infrared spectra of the deformed samples show absorption bands at the same wave numbers and relative intensity as natural olivine, indicating that the experimental samples contain the same hydrous defects. Fitting the creep data from samples with a range of water contents determined from these absorption bands shows a near linear relationship between strain rate and water content, consistent with published observations. The experiments therefore show that the rheology of hydrous olivine is determined by hydrated impurity-related defects rather than intrinsic point defects.