A43B-0281
Harmonic regression based multi-temporal cloud filtering algorithm for Landsat 8
Thursday, 17 December 2015
Poster Hall (Moscone South)
Pratik Joshi, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
Abstract:
Landsat data archive though rich is seen to have missing dates and periods owing to the weather irregularities and inconsistent coverage. The satellite images are further subject to cloud cover effects resulting in erroneous analysis and observations of ground features. In earlier studies the change detection algorithm using statistical control charts on harmonic residuals of multi-temporal Landsat 5 data have been shown to detect few prominent remnant clouds [Brooks, Evan B., et al, 2014]. So, in this work we build on this harmonic regression approach to detect and filter clouds using a multi-temporal series of Landsat 8 images. Firstly, we compute the harmonic coefficients using the fitting models on annual training data. This time series of residuals is further subjected to Shewhart X-bar control charts which signal the deviations of cloud points from the fitted multi-temporal fourier curve. For the process with standard deviation σ we found the second and third order harmonic regression with a x-bar chart control limit [Lσ] ranging between [0.5σ < Lσ < σ] as most efficient in detecting clouds. By implementing second order harmonic regression with successive x-bar chart control limits of L and 0.5 L on the NDVI, NDSI and haze optimized transformation (HOT), and utilizing the seasonal physical properties of these parameters, we have designed a novel multi-temporal algorithm for filtering clouds from Landsat 8 images. The method is applied to Virginia and Alabama in Landsat8 UTM zones 17 and 16 respectively. Our algorithm efficiently filters all types of cloud cover with an overall accuracy greater than 90%. As a result of the multi-temporal operation and the ability to recreate the multi-temporal database of images using only the coefficients of the fourier regression, our algorithm is largely storage and time efficient. The results show a good potential for this multi-temporal approach for cloud detection as a timely and targeted solution for the Landsat 8 research community, catering to the need for innovative processing solutions in the infant stage of the satellite.