H33H-1707
The Development of a Real Time Surface Water Flow Model to Protect Public Water Intakes in West Virginia

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Michael Strager, West Virginia University, Morgantown, WV, United States
Abstract:
In January of 2014 West Virginia experienced a chemical spill upstream of a public water intake on the Elk River near Charleston, West Virginia that made the water unusable for 300,000 people for weeks. In response to this disaster, state officials enacted legislation to protect the future public water intake locations by requiring the delineation of zones of critical concern that extend a five hour travel time above the intakes. Each zone is defined by the travel time and buffered along the river mainstem and tributary locations to identify future potential threats to the water supply. While this approach helps to identify potential problems before they occur, the need existed to be able to respond to a spill with information regarding the real travel time of a spill to an intake with consideration of actual stream flow at the time of the spill. This study developed a real time surface flow model to protect the public water intakes using both regional and seasonal variables. Bayesian statistical inference enabled confidence levels to be placed on flow estimates and used to show the probability for the time steps as water approached an public water intake. The flow model has been incorporated into both a smartphone app and web-based tool for better emergency response and management of water resources throughout the state.