H52F-02
Managing and understanding risk perception of surface leaks from CCS sites: risk assessment for emerging technologies and low-probability, high-consequence events

Friday, 18 December 2015: 10:35
3018 (Moscone West)
Caitlin M Augustin, University of Miami, Miami, FL, United States
Abstract:
Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings –analyzed in Slovic and Weber’s 2002 framework – that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a conflation of CCS with the more advanced, widespread technology hydraulic fracturing and corresponding strong risk associations. We conclude with suggestions on how to integrate modeling results into public conversations to improve risk awareness and we provide preliminary policy recommendations to increase public support for CCS.