A51N-0281
AEROSOL CHARACTERISITICS OVER ALBERTA USING MODIS AND OMI SATELLITE DATA

Friday, 18 December 2015
Poster Hall (Moscone South)
Zaher Hashisho Sr1, Hebaalah S Marey1, Long Fu2 and John C Gille3, (1)University of Alberta, Edmonton, AB, Canada, (2)AEMERA, Edmonton, AB, Canada, (3)NCAR, Boulder, CO, United States
Abstract:
We present the first detailed analysis of optical aerosol characterization over Alberta based on satellite data analysis. Aerosol optical depth (AOD) at 550 nm for 11 years (2003–2013), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite, was analyzed. Additionally, UV aerosol index (AI) data for 9 years (2005-2013) retrieved from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite was used to examine absorbing aerosols. Comparing AERONET to MODIS 3 km and 10 km products indicated a stronger correlation (r=0.9 for the latter vs 0.7 for the former) thus 10 km product has been utilized for this study. Overall, gridded seasonal maps (0.1 deg.) of the 11 yr averaged AOD illustrate the highest AOD during summer, followed by spring, with the lowest observed values during fall (there is no enough valid MODIS data in winter due to cloud cover). Aerosol optical properties exhibited large spatio-temporal heterogeneity in the summer with mean AOD of 0.25, followed by spring, while the fall had less variability with mean AOD below 0.1 for the entire region. However, the spatial analysis indicated hot spots around Edmonton and Calgary cities even in the fall when AODs are very low (close to background). All of the datasets showed interannual variability with no significant trend. The AI values ranged from 0.5 during winter to as high as 5 during summer suggesting mid- and long range transport of boreal fire emissions. Map correlation between AOD and UV AI showed large variability (0.2 to 0.7) indicating presence of different types of aerosols. These low correlations imply the presence of non-absorbing particles (e.g. sulfate) that comprise a relatively large mass fraction of AOD and/or low altitude particles.