B11D-0476
Magnetic susceptibility mapping of fly ash in soil samples near a coal-burning power plant in Pointe Coupee Parish, Louisiana.
Abstract:
Atmospheric deposition of pollutants is a major health and environmental concern. In a 2010 study, the CATF attributed over 13,000 deaths each year to fly ash and other fine particles emitted by U.S. coal-burning power plants. The magnetic properties of fly ash allows for mapping an area suspect of PM pollution faster and more efficiently than by conducting chemical analysis as the former alternative.The objective of this study is to detect the presence of magnetic particles related to the migration of fly ash from a nearby coal power plant over parts of Pointe Coupee Parish, LA. This is based on the idea that the fly ash that is released into the atmosphere during the coal burning process contains heavy metals and magnetic particles in the form of ferrospheres, which can be used to trace back to the source. Maps of the top and sub soil were generated to differentiate the magnetic susceptibility values of the heavy metals potentially attributed to the migration and settling of fly ash onto the surface from any pre-existing or naturally occurring heavy metals in the sub soil. A 60 km2 area in Pointe Coupee Parish was investigated in approximately 0.5 km2 subsets. The area in Pointe Coupee Parish, LA was selected because land use is predominantly rural with the Big Cajun II power plant as the main contributor for air borne contaminants. Samples of fly ash obtained directly from the source below one of the power plant’s precipitators were also analyzed to verify the field and laboratory analysis.
Contour maps representing the spatial distribution of fly ash over Pointe Coupee, LA, along with histograms of magnetic susceptibility values, and chemical analysis all indicate a correlation between the proximity to the power plant and the predominant wind direction. Acquisition curves of the isothermal remnant magnetization demonstrate the presence of predominantly low coercivity minerals (magnetite) with a small amount of a high-coercivity phase. The microstructure of the magnetic fractions of the fly ash along with select top and sub soil samples were observed using a reflective light microscope for identifying and confirming the presence of ferrospheres associated with fly ash. Chemical analyses of select samples revealed their heavy metal composition and the correlation with their SIRM and low field mass susceptibility values.