B13K-07
Deep aquifer prokaryotic community responses to CO2 geosequestration
Monday, 14 December 2015: 15:10
2008 (Moscone West)
Andre Mu, University of Melbourne, Parkville, VIC, Australia and John W Moreau, University of Melbourne, Parkville, Australia
Abstract:
Little is known about potential microbial responses to supercritical CO2 (scCO2) injection into deep subsurface aquifers, a currently experimental means for mitigating atmospheric CO2 pollution being trialed at several locations around the world. One such site is the Paaratte Formation of the Otway Basin (~1400 m below surface; 60°C; 2010 psi), Australia. Microbial responses to scCO2 are important to understand as species selection may result in changes to carbon and electron flow. A key aim is to determine if biofilm may form in aquifer pore spaces and reduce aquifer permeability and storage. This study aimed to determine in situ, using 16S rRNA gene, and functional metagenomic analyses, how the microbial community in the Otway Basin geosequestration site responded to experimental injection of 150 tons of scCO2. We demonstrate an in situ sampling approach for detecting deep subsurface microbial community changes associated with geosequestration. First-order level analyses revealed a distinct shift in microbial community structure following the scCO2 injection event, with proliferation of genera Comamonas and Sphingobium. Similarly, functional profiling of the formation revealed a marked increase in biofilm-associated genes (encoding for poly-β-1,6-N-acetyl-D-glucosamine). Global analysis of the functional gene profile highlights that scCO2 injection potentially degraded the metabolism of CH4 and lipids. A significant decline in carboxydotrophic gene abundance (cooS) and an anaerobic carboxydotroph OTU (Carboxydocella), was observed in post-injection samples. The potential impacts on the flow networks of carbon and electrons to heterotrophs are discussed. Our findings yield insights for other subsurface systems, such as hydrocarbon-rich reservoirs and high-CO2 natural analogue sites.