SA32A-07
Feasibility of hydrogen density estimation from tomographic sensing of Lyman alpha emission

Wednesday, 16 December 2015: 12:05
2007 (Moscone West)
Farzad Kamalabadi, University of Illinois at Urbana Champaign, Urbana, IL, United States
Abstract:
In this work, we describe the scientific motivation, basic principles, and feasibility of a new approach to the estimation of neutral hydrogen (H) density in the terrestrial exosphere based on the 3-D tomographic sensing of optically thin H emission at 121.6 nm (Lyman alpha). In contrast to existing techniques, Lyman alpha tomography allows for model-independent reconstruction of the underlying H distribution in support of investigations regarding the origin and time-dependent evolution of exospheric structure. We quantitatively describe the trade-off space between the measurement sampling rate, viewing geometry, and the spatial and temporal resolution of the reconstruction that is supported by the data. We demonstrate that this approach is feasible from either earth-orbiting satellites such as the stereoscopic NASA TWINS mission or from a CubeSat platform along a trans-exosphere trajectory such as that enabled by the upcoming Exploration Mission 1 launch.