G33B-1144
Lake surface area variation and its responses to climatic change in Yamzhog Yumco Basin, South Tibet during 1970-2010

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Xueqin Zhang, IGSNRR Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
Abstract:
The research on lake extraction from multi-source and multi-temporal satellite images and the lake size variation can provide reliable method and indispensable information to deepen the understanding about alpine lake changes with the accelerating warming. With field survey experience in the Yamzhog Yumco Basin, South Tibet, the outlines of five lakes (i.e., Yamzhog Yumco, Chen Co, Kongmu Co, Bajiu Co and Puma Yumco) were delineated by the adoption of 42 scenes of satellite images from Landsat, CBERS and HJ from 1970 to 2010, basing on which the responses of alpine lakes to climate change at different timescales were explored. The results are summarized as follows. (1) The seasonal fluctuation of lake surface area was similar with different trend for the five alpine lakes. As for the last 41 years, the annual variation of lake surface area exhibited two kinds of patterns for the five alpine lakes. And the Yamzhog Yumco declined by 9.41%, while the rest four lakes expanded. (2) The responses of alpine lakes to climate change rely on different timescale and water replenishment types. On the one hand, the precipitation change was the predominant driving forces for the seasonal fluctuation and variation trend of lake size, and the rising temperature accounted for the inter-annual lake surface variation. On the other hand, the two kinds of alpine lakes behaviors were well correspondent with the warming temperature over the Qinghai-Tibetan Plateau. The lakes supplied mainly by precipitation shrunk as a result of increased evaporation, and lakes supplied mainly by glacier and snow meltwater, however, expanded because of the remarkable glacier recession. (3) The quantification of hydrological components would hopefully be improved, according to uncertainties analysis, with the adoption of microwave satellite images and higher resolution ones to disclose the interaction mechanism among climate, glacier, and lake in alpine regions.