C33E-0868
Determining the Current and Future Health of Low-Latitude Andean Glaciers Using an Equilibrium Line Altitude Model and Hypsometric Data from the Randolph Glacier Inventory

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Andrew Malone, University of Chicago, Chicago, IL, United States
Abstract:
Mountain glaciers have been described as the water towers of world, and for many populations in the low-latitude South American Andes, glacial runoff is vital for agricultural, industrial, and basic water needs. Previous studies of low-latitude Andean glaciers suggest a precarious future due to contemporary warming. These studies have looked at trends in freezing level heights or observations of contemporary retreat. However, regional-scale understanding of low-latitude glacial responses to present and future climate change is limited, in part due to incomplete information about the extent and elevation distribution of low-latitude glaciers. The recently published Randolph Glacier Inventory (RGI) (5.0) provides the necessary information about the size and elevation distribution of low-latitude glaciers to begin such studies.

We determine the contemporary equilibrium line altitudes (ELAs) for low-latitude Andean glaciers in the RGI, using a numerical energy balance ablation model driven with reanalysis and gridded data products. Contemporary ELAs tend to fall around the peak of the elevation histogram, with an exception being the southern-most outer tropical glaciers whose modeled ELAs tend to be higher than the elevation histogram for that region (see below figure). Also, we use the linear tends in temperature and precipitation from the contemporary climatology to extrapolate 21stcentury climate forcings. Modeled ELAs by the middle on the century are universally predicted to rise, with outer tropical ELAs rising more than the inner tropical glaciers. These trends continue through the end of the century. Finally, we explore how climate variables and parameters in our numerical model may vary for different warming scenarios from United Nation’s IPCC AR5 report. We quantify the impacts of these changes on ELAs for various climate change trajectories.

These results support previous work on the precarious future of low latitude Andean glaciers, while providing a richer understanding of the glacial impacts of contemporary and future warming. Also, this work provides analysis of processes and feedbacks between different climate variables important to glacier mass balances in a warming world, improving predictions for the fate of low-latitude Andean glaciers.