T32D-08
Zooming into the Paraná-Etendeka silicic volcanics, southern Brasil: a physical volcanological approach

Wednesday, 16 December 2015: 12:05
302 (Moscone South)
Darren McClurg Gravley1, Guilherme A R Gualda2, Lydia Jane Harmon2, Samantha Tramontano2, Ana Carolina Franciosi Luchetti3 and Antonio Nardy3, (1)University of Canterbury, Christchurch, New Zealand, (2)Vanderbilt University, Earth and Environmental Sciences, Nashville, TN, United States, (3)Universidade Estadual Paulista, Petrologia e Metalogenia, Rio Claro, Brazil
Abstract:
Paraná-Etendeka volcanism led to the opening of the Atlantic Ocean during the early Cretaceous. Most Paraná research has focused on the regional scale geochemistry and geochronology. Complementarily, we have taken a physical volcanological approach to elucidate the styles and locations of silicic eruptions with a focus on extrusive vs. explosive varieties, and an ultimate goal to characterise the crustal magmatic conditions. Through satellite to microscopic observations we can zoom from volcanic edifice and deposit morphologies, remarkably preserved in the Mesozoic landscape, to primary microscopic textures. Lava domes appear in clusters with high relief and are surrounded by lower flat-topped terraces comprised of multiple tabular-shaped packages with conspicuous horizontal jointing. Joint thickness coincides with layering from mm-scale laminations to larger lens-shaped blobs up to 20 cm thick and more than a metre long. These layered deposits appear to be compressed and/or stretched into the finer laminations and grade up into the fatter lens-shaped blobs. In other regions, extensive plateaus dominate the landscape with flat-lying flow packages continuous over 10’s of kilometres and possibly further. Rheomorphism is evident in places with sub-parallel joints that grade up into a zone of deformation where curvilinear to overturned joint patterns reflect lateral forcing in a more ductile flow regime.

Microscopically the blobs and surrounding matrix are almost indistinguishable except for subtle differences in spherulite textures, zonal alteration and distribution of crystal sizes. Although our research is relatively nascent, our observations suggest eruptions may have ranged from edifice building effusive ones to more explosive ones, albeit possibly relatively low fire fountains feeding hybridised lava/pyroclastic flows. Some of these flows are extensive, tens to possibly hundreds of kilometres long, consistent with high eruption rates of hot magma. These interpretations are consistent with published temperatures as hot as 1050 degrees for these silicic magmas. Preliminary work focusing on glass compositions and coexisting phase assemblages within the blobs reveals that silicic magmas resided in the shallow crust prior to eruption.