EP41D-08
Reconstructing Deep-Marine Sediment Gravity Flow Dynamics from Ancient Rocks: an Example from Skoorsteenberg Fm. Tanqua Karoo
Thursday, 17 December 2015: 09:45
2003 (Moscone West)
Ian Antony Kane, Statoil Norway Fornebu, Fornebu, Norway, Anna S.M. Pontén, Statoil, Research Centre, Trondheim, Norway, David Hodgson, University of Leeds, School of Earth & Environment, Leeds, United Kingdom and Brita Vangdal, Statoil, Research Centre, Bergen, Norway
Abstract:
The processes which create deep-marine lobes are challenging to study, owing to the depth of the lobes beneath the sea surface and the destructive nature of the sediment gravity flows which transport the sediment that builds them. One approach is to reconstruct paleohydraulics using detailed outcrop observations which can be used to build a theoretical framework for flow behavior. The Skoorsteenberg Fm., Tanqua Karoo, offers an excellent opportunity to study fine-grained deep-marine lobes in near continuous quasi-3D exposure. The spatial and stratigraphic distribution of the various facies of Fan 3 (one of the Skoorsteenberg Fm. lobe complexes) are presented. The turbidites which dominate the proximal and medial lobe areas, pass down-dip into very muddy sandstones which are here attributed to a type of transitional flow state. The model developed here suggests that turbidity currents exiting channels were large and turbulent enough to erode and entrain their substrate, increasing their concentration and clay content. As the flows decelerated they became increasingly stratified, characterised by an increasing bulk Richardson (Ri). Sand and silt particles settled together with flocculated clay, forming a cohesive, low yield-strength layer. This layer flowed in a laminar manner but settling of sand grains continued due to the low yield strength. The rising yield strength of the lower layer progressively inhibited the efficiency of vertical mixing, characterised by an increasing flux Richardson number, which, when it exceeded a critical value , led to a catastrophic collapse of the turbulent energy field and en-masse transformation of the upper part of the flow, ultimately resulting in a highly argillaceous sandstone (debrite) division. This transformation was possible due to the narrow grain size range, dominantly silt-vf sand with abundant flocculated clay, which behaved as a single phase. This model of flow evolution accounts for the presence of such beds without invoking external controls or large-scale flow partitioning, and also explains the abrupt pinchout of all divisions of these sandstones following catastrophic loss of turbulence.