H51A-1356
System robustness analysis for drought risk management in South Florida

Friday, 18 December 2015
Poster Hall (Moscone South)
Laurens Bouwer and Dirk Eilander, Deltares, Delft, Netherlands
Abstract:
Drought is a frequently returning natural hazard in Florida, with at least one severe drought to be expected every decade. These droughts have had many impacts such as loss of agricultural products, inadequate public water supply and salt water intrusion into freshwater aquifers. Furthermore, climate change projections for South Florida suggest that dry spells are likely to be more frequent and prolonged, with negative impacts on water supply management for all users. In this study a System Robustness Analysis was conducted in order to analyse the effectiveness of strategies to limit the socio-economic impact of droughts under climate change.

System Robustness Analysis (SRA) aims to support decision making by quantifying how well a system, with and without additional measures, can remain functioning under a range of external disturbances. Two system characteristics add up to system robustness: Resistance is the ability to withstand disturbances without responding (zero impact), and resilience is the ability to recover from the response to a disturbance. SRA can help to provide insight into the sensitivity of a system to changing magnitudes of extreme weather events.

A regional-scale hydrologic and water management model is used to simulate the effect of changing precipitation and evaporation forcing on agricultural and urban water supply and demand in South Florida. The complex water management operational rules including water use restrictions are simulated in the model. Based on model runs with a various climate scenarios, drought events with a wide range of severity are identified and for each event the socio-economic impacts are determined. Here, a drought is defined as a reduced streamflow in the upstream Kissimmee basin, which contributes most to Lake Okeechobee, the major surface water storage in the system. The drought severity is characterized by the maximum drought deficit volume. Drought impacts are analyzed for several users in Miami Dade County. From the relation between drought severity and drought impact the resistance and resilience of the system for hydrological droughts are found. This relation is investigated for an array of adaptation measures and strategies in order to find strategies that will effectively increase the system’s ability to deal with future drought events.