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1 Introduction

Elastic Full Waveform Inversion (EFWI) is a computationally intensive iterat-
ive method for estimating elastic model parameters. A key element of EFWI
is the numerical solution of the elastic wave equation which lies as a founda-
tion to quantify the mismatch between synthetic (modelled) and true (target)
measured seismic data. The misfit between the modelled and target receiver
data is used to update the parameter model to yield a better fit between the
modelled and true receiver signal. A common approach to the EFWI model
update problem is to use a conjugate gradient search method. In our approach
we suggest that the resolution and cross-coupling for the estimated parameter
update can be found by computing the Hessian matrix. Both a homogeneous
model and the Gullfaks model (fig. 1) are used to illustrate the influence of
offset on parameter resolution and cross-coupling.
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Figure 1: The Gullfaks model. The red diamond indicates a small inclusion δvp in the
target vp model that is not present in the background model. The black and white
lines indicate the position of the test perturbations used to calculate the Hessian
kernel.

(a) Long offset, perturbations in x-direction.
(b) Zero offset, perturbations in x-direction.
(c) Long offset, perturbations in z-direction.
(d) Zero offset, perturbations in z-direction.

Figure 3: Homogeneous model Hessian kernels.

(a) Long offset, perturbations in x-direction.
(b) Zero offset, perturbations in x-direction.
(c) Long offset, perturbations in z-direction.
(d) Zero offset, perturbations in z-direction.

Figure 4: Gullfaks model Hessian kernels.
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2 Aim

The main goal of this research is to get a better understanding of the wavefield
interactions in seismic surveys and how to exploit this information in order to
produce more accurate subsurface models, and with a higher confidence.

We are using the known adjoint-state approach to calculate a model update
based on the difference in surface recorded field between the target model and
an initial model as described by P.Mora and A.Tarantola[1, 2], and expanded
by A.Fichtner[3, 4] to calculate the Hessian acting on a model perturbation.
Here we have calculated the Hessian acting on several small perturbations in
order to construct the Hessian for a defined section of the model. We then
use the Hessian matrix to infer parameter resolution and cross-coupling for
different acquisition geometries.

2

3 Elastic wave equation

Given position x ∈ G ⊂ �2, time t, and model parameters m = (ρ,C), where
ρ is density and C is the elastic tensor, the 2D Elastic wave equation operator
L with driving force f can be written as[3]

L(u,m) = ρ(x)ü(x, t)−∇σ(x, t) = f(x, t), (1)

where u is the displacement field, and σ is the stress tensor which can be
expressed as

σi j = Ci jkl∂kul, (2)

in a perfectly elastic medium. Note that the wave operator L is linear in u.

Assuming an isotropic medium we can express the elastic tensor C using the
Lamé parameters λ and µ as

Ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk) (3)

with δi j being the Kronecker delta.

Imposing the free surface boundary condition results in the normal components
of the stress tensor σ vanishing at the surface ∂ G of the Earth model, i.e.

σn|x∈∂ G = 0, (4)

given the surface normal n on ∂ G. Further, both the displacement field u and
the velocity field u̇ are required to satisfy the initial condition

u|t≤0 = u̇|t≤0 = 0. (5)
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4 Model update

Using a misfit functional Ψ
�

dr(m),d0

�

, we can compare the target model re-
corded data d0 with the modelled data dr = u(m,xr), where xr is the position
of the receivers. The goal of this method is to find a model update δmk that
decreases the misfit such that

Ψ(mk+1 =mk +δmk)< Ψ(mk). (6)

This can be done by calculating the Jacobian of the misfit as

J(mk +δmk) =∇mΨ(mk +δmk), (7)

and linearising it around mk

J(mk +δmk)� J(mk) +∇mJ(mk)δmk = 0. (8)

With the Hessian expressed as

�(mk) =∇mJ(mk) =∇m∇mΨ(mk) (9)

we can rearrange eq. (8)

�(mk)δmk = −J(mk), (10)

assuming the Hessian is invertible we can solve for δmk and get

δmk = −�−1J. (11)

Since the full Hessian is computationally expensive, eq. (11) is commonly
approximated[5] by substituting the inverse Hessian with a scalar αk ∈ �
resulting in

δmk � αkJ. (12)

A model update can then be found via a linear search for the best step length
αk, but at the loss of information regarding parameter resolution and cross-talk.
Here we will calculate the Hessian acting on a model perturbation as �δmk
and use the result to study the effect of different perturbations δmk.
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5 Fréchet kernels

We introduce the adjoint field u† shown in figure 2 as the backpropagation of
the difference in the recorded field dr and target recording d0 dependent on a
norm χ which forms the kernel of the misfit functional Ψ.

By cross-correlating the adjoint field with the Fréchet derivative of the wave
operator we can calculate the Jacobian as[4]

J= Fm(u
†,u) =

∫

T

u†∇mL(u,m)dt, (13)

where Fm is the Fréchet kernel defined as the volumetric density of the Fréchet
derivative.

In the perfectly elastic isotropic case using the m0 = (ρ,µ,λ) parametrisation,
the Fréchet kernels can be written as

F0
ρ(x) = −
∫

T

u̇†
i u̇i dt, (14)

F0
λ(x) = +

∫

T

∂iu
†
i ∂ ju j dt, (15)

F0
µ(x) =

1
2

∫

T

�

∂ ju
†
i + ∂iu

†
j

��

∂ jui + ∂iu j

�

dt, (16)

which can then be used to calculate model updates. The Fréchet kernels of
different parametrisations can easily be obtained as a linear combination of
the m0 kernels, e.g. in the m= (ρ, vp, vs) parametrisation we get

Fρ = F0
ρ + (v

2
p − 2v2

s )F
0
λ+ v2

s F0
µ, (17)

Fvp
= 2ρvpF

0
λ, (18)

Fvs
= 2ρvsF

0
µ− 4ρvsF

0
λ. (19)
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where ⊗ denotes the tensor or dyadic product, i.e. (a ⊗ b)i jkl = ai j bkl . Both kernels are
non-zero only within the primary influence zone where the regular and adjoitn wavefield
interact at some time between t = 0 and t = te. The primary influence zone is the region
where a model perturbation δm causes the regular wavefield u to generate a first-order effect
on the measurement.

For the majority of seismic phases, the primary influence zone (fig. 1), is a roughly cigar-
shaped region connecting the source and receiver. Its precise geometry depends on many
factors including the frequency content, time window, type of measurement and reference
earth model m.

Primary
influence

zone
Time Time

Adjoint wavefield u† Regular wavefield u

Receiver Source

Figure 1: Illustration depicting the primary influence zone where the regular wavefield u interacts
with the adjoint wavefield u†. The regular wavefield depicted in teal travels outwards from the
source, while the adjoint wavefield depicted in orange travels inwards to the receiver. The primary
influence zone marks the region where a model perturbation δm generates a first-order scattered
wavefield that afffects the measurement at the receiver. Perturbatoins located outside the primary
influence zone will have no first-order effect on the measurements. The spatial extension of the
primary influence zone is proportional to the length of the analysis time window considered in the
seismograms. The width of the First Fresnel zone is proportional to

�

Td l where Td and l denote
the dominant period and the ray path length between the source and receiver, respectively.fig:primaryInfluenceZone

5.1.1 Perfectly elastic and isotropic medium

Equation (96) is of general validity, but also cumbersome. A relevant special case is the
perfectly elastic and isotropic medium case. Perfect elasticity means that the time-dependence
of the elastic tensor C and its perturbation δC has the form of a Heaviside function H(t)

C(x, t) = C(x)H(t), δC(x, t) = δC(x)H(t). (99)
{eq:perfectElasticTensor}
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Figure 2: Interaction between the regular forward wavefield u and the adjoint wave-
field u† takes place in the primary influence zone indicated by a grey area.
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6 Hessian kernels

The Hessian � acting on a model perturbation δm can be expressed with the
Hessian kernel Hm as[4]

�δm= Hm. (20)

The Hessian kernel can in turn be split up into three different terms

Hm = H1
m(u

†,δu) +H2
m(δu†,u) +H3

m(u
†,u) (21)

by introducing the perturbed forward and adjoint fieldsδu andδu† respectively
as

δu = lim
ν→0

1
ν

�

u(m+ νδm)− u(m)
�

, (22)

δu† = lim
ν→0

1
ν

�

u†(m+ νδm)− u†(m)
�

. (23)

It can be shown that the first two Hessian terms can be expressed using the
same formula as for the Fréchet kernels, but substituting the wavefields[4]

H1
m =

∫

T

u†∇mL(δu,m)dt = Fm(u
†,δu), (24)

H2
m =

∫

T

δu†∇mL(u,m)dt = Fm(δu†,u.) (25)

The third Hessian term can be expressed as

H3
m =

∫

T

u†∇m∇mL(u,m)(δm)dt (26)

which vanishes in the ρ,µ,λ parametrisation. In the ρ, vp, vs parametrisation
H3

m is non-zero and can written using the Fréchet kernels as

H3
m =







H3
ρ

H3
vp

H3
vs






=





0 ρ−1Fvp
ρ−1Fvs

ρ−1Fvp
v−1

p Fvp
0

ρ−1Fvs
0 v−1

s Fvs









δρ
δvp
δvs



 . (27)

Note that the H3
m element is explicitly dependent on the model perturbation.

We can construct a matrix representing the Hessian � at position xi due to a
model perturbation δm at position x j

�δm=

























Hρ0 δ
ρ
0 Hρ0 δ

ρ
1 · · · Hρ0 δ

vp

0 · · · Hρ0 δ
vs
0 · · ·

Hρ1 δ
ρ
0 Hρ1 δ

ρ
1

. . . ... . . . ... . . .
Hρ2 δ

ρ
0

... . . . ... . . . ... . . .
... ... . . . ... . . . ... . . .

H
vp

0 δ
ρ
0 · · · · · · H

vp

0 δ
vp

0 · · · H
vp

0 δ
vs
0 · · ·... ... . . . ... . . . ... . . .

Hvs
0 δ
ρ
0 · · · · · · Hvs

0 δ
vp

0 · · · Hvs
0 δ

vs
0 · · ·... ... . . . ... . . . ... . . .

























using the shorthand notation

�(xi)δm(x j) = Hn
i δ

m
j . (28)
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7 Method

The models used are 10 km wide by 3 km deep with a grid spacing of 10 m.
We have introduced a 30m × 30 m inclusion in the vp parameter centred at
(5 km,1.9 km) in the target model which we study the effect of by looking at
the Hessian kernels. Two source-receiver configurations are considered, a zero-
offset configuration where the sources are directly above the inclusion, and
a long-offset configuration where the sources are placed at the edges of the
domain. In both cases the sources are placed at a 30 m depth as 8 Hz Ricker
wavelet stress monopoles, and a OBC-type receiver array running along the
x-direction also at a 30 m depth.

Both models are probed using perturbations in all of the model parameters
sequentially at distances up to 300 m from the centre of the inclusion in the x-
and z-directions as indicated in figure 1 by the black and white lines.

We first study the homogeneous model which has background velocities
vp = 2000 m/s, vs = 1000 m/s, and density ρ = 1500kg/m3. The resulting H1

and H2 kernels are shown in figure 3.

Using the Gullfaks model illustrated in figure 1 results in the H1 and H2 Hessian
kernels shown in figure 4.

The H3 kernels of both models are shown in figure (5). Due to the localised
perturbations used in this investigation, only the diagonal elements of the H3

kernel are non-zero.

By comparing the different patterns of the Hessian kernels in a homogeneous
medium we posit the possibility of inferring the resolution of different paramet-
ers and parameter coupling. Further comparing the homogeneous case with a
more complex model we wish to comment on the influence of heterogeneities
and internal scattering.

We will mainly focus on the H1 and H1 kernels in the common ρ, vp, vs para-
metrisation.
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8 Results and Discussion

Studying the Hessian kernels shown in figure 3-5 we observe a strong signal
along the diagonal in all elements as an imprint of the perturbation. Espe-
cially in the H3 elements where only the diagonal is non-zero for some of the
elements.

We believe the wave pattern to be caused by the finite frequency content and
possibly linked to the choice of misfit functional Ψ and the cycle skipping
problem[5].

Looking at the homogeneous case in figure 3 we notice a comparatively low
level of smearing in the x-direction in both the long and zero offset cases
compared with the z-direction. The best focusing is obtained at long offsets in
both directions as expected.

The pattern in the top row of the horizontal direction kernels suggest that the
Hρ-kernel is chiefly affected by interactions above the perturbation, which is
also suggested by geometrical spreading studies[6]. The relatively smeared
density kernel compared to the other elements is also in line with the notion
that it is hard to invert for density[5]. There is also a strong coupling between
the density and velocity parameters which is evident from the strong pattern
from the δvp and δvs columns in the Hρ row, especially in the z-direction.

It can appear that the vs parameter is best resolved, though by closer inspec-
tion we see a arguably stronger coupling with the δvp perturbation than the
expected δvs parameter.

All in all there is a significant coupling between all three parameters in the
first two kernel terms having to do with the perturbed wavefields δu and δu†.
The pairwise strong coupling of parameters in the remaining H3 term might
be able to alleviate some of the ambiguity by use of different perturbations.

Looking at the Hessian kernels obtained from the more complex Gullfaks model
we can observe the same trends as in the homogeneous case. The resulting
Hessian kernels for the heterogeneous case can be said to be better focused
than in the homogeneous case, especially at the long offset. It should be noted
that this effect can be due to a haphazardly better acquisition geometry and
other models should be tested.

The kernels agree with previous observations and show promise to for applic-
ability in uncertainty analysis for seismic exploration.
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9 Future work

The presented Hessian kernels show interesting properties. Different strategies
for calculating them should be tested, including different frequencies and misfit
functionals to explore the effect it might have one the phase wave pattern, if
any.

When properly implemented we suggest to incorporate the Hessian kernels
in a iterative Full Waveform Inversion (FWI) scheme based on the Newton
method[7, 8] to improve the inversion results and use the information con-
tained in the kernels to provide uncertainty estimates of the result.

We also suggest to calculate the Hessian kernels for different and more com-
plex parametrisations (e.g. VTI, orthorhombic) in the pursuit for an optimal
parametrisation to use in seismic exploration.
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