
CONCLUSION
Replacing namelists with JSON maintains the functionality
of the namelist while adding improvements such as
portability, multilanguage support, and quality control
checking of the input.

a b

Fig 3 - Surface temperatures (K) using a) namelists and
b) JSON as the experiment parameter input method

RESULTS
Because the model is reading/writing the JSON
input/output only one time each, the model run time
differences are not noticeable using the JSON routines.
Every namelist that is read using the wrapper is written
out, so there is no doubt about which values and namelists
were used in the experiment. The output JSON file can be
easily parsed, whereas the namelist output is written to a
logfile that can contain more than just namelists. The
answers bitwise reproduce the answers obtained using the
namelist (Fig 3). C-functions that require user-defined
input have a routine that they can call instead of calling a
Fortran function to read the namelist. Errors are more
descriptive as opposed to the general message used for
namelists, and the JSON output file can be dumped out to
see how far along the JSON reading was when the error
occurred.

&example_nml
 array = 1,2,3,4,5
 array(2) = 20
 array2 = 3*20
 string=’hello’
 /

{“ example_nml”:[
 {“array”:[1,2,3,4,5]} ,
 {“array(2)”:20},
 {“array2”:[20,20,20]},
 {“string”: “hello”}
] }

Fig 2 - Example namelist to JSON conversion

METHODS
A JSON is generated from an existing namelist by
converting the namelist into a JSON array of
JSON objects (Fig 2). The JSON is then read by
the model and stored as a string. The JSON is
parsed for the “namelist” and each key in the
namelist. The values of the keys are extracted.
Whether or not the key is in the JSON, it’s value
is stored in the output JSON. The output JSON is
written at the model’s end.

Fig 1 - Flow chart of the JSON methodolgy

MODEL RUN

PREPROCESSOR
CONVERT NAMELIST
TO JSON

INITIALIZATION

OPEN JSON
 FILE
JSON.INPUT

READ JSON INPUT
 FILE
 (SINGLE CORE)

SAVE INPUT
 JSON STRING
 (ALL CORES)

RUN

PARSE INPUT JSON
STRING FOR VALUES

SAVE ALL VARIABLE
VALUES IN JSON
OUTPUT STRING

FINALIZATION

WRITE JSON OUTPUT STRING TO JSON.OUTPUT

PROCESS NAMELISTS

MOTIVATION
There are 214 namelist reads, but 210 writes in the GFDL
Atmosphere Model 4 code (Table 1). Tracking every
namelist and default value is nearly impossible. Now that
Fortran is interoperable with C, we will be using C for
sections of our code that are best written in that language.
We also need a way to quickly check the input files for
differences and figure out the owner of such changes.
Additionally, output needs to be created that can easily be
checked and compared to previous runs to make sure the
model is using the same inputs. In order to solve all of
these issues, a set of routines that process JSON have been
created.

Replacing Fortran Namelists with JSON
Tom Robinson

Engility/NOAA GFDL
thomas.robinson@noaa.gov

IN41C-0051

Scientists need a way to change their experiments without
changing the model code. Namelists are currently used as
key/value pair input in the GFDL climate model that change
on an experiment basis. Some downfalls of namelists are
- Only single errors can be detected
- Output must be written out by the programmer
- There are no tools to check namelists
- Namelists are only part of the Fortran standard
- Tracking namelist and default value changes is difficult

INTRODUCTION

