Replacing Fortran Namelists with JSON

Tom Robinson
Engility/NOAA GFDL

thomas.robinson@noaa.gov

IN4A1C-0051

ENGILITY

Your Mission. Our Commitment.

INTRODUCTION

Fig 1 - Flow chart of the JSON methodolgy

Scientists need a way to change their experiments without
changing the model code. Namelists are currently used as
key/value pair input in the GFDL climate model that change
on an experiment basis. Some downfalls of namelists are

- Only single errors can be detected

- Output must be written out by the programmer

- There are no tools to check namelists

- Namelists are only part of the Fortran standard

- Tracking namelist and default value changes 1s difficult

MOTIVATION

There are 214 namelist reads, but 210 writes in the GFDL
Atmosphere Model 4 code (Table 1). Tracking every
namelist and default value 1s nearly impossible. Now that
Fortran 1s interoperable with C, we will be using C for
sections of our code that are best written in that language.
We also need a way to quickly check the input files for
differences and figure out the owner of such changes.
Additionally, output needs to be created that can easily be
checked and compared to previous runs to make sure the
model 1s using the same nputs. In order to solve all of
these 1ssues, a set of routines that process JSON have been
created.

PREPROCESSOR

E CONVERT NAMELIST
TO JSON

MODEL RUN

INITIALIZATION

PROCESS NAMELISTS

SAVE INPUT
JSON STRING
—> (ALL CORES)

OPEN JSON READ JSON INPUT

FILE _y FILE

RUN
SAVE ALL VARIABLE
—> VALUES IN JSON
OUTPUT STRING

PARSE INPUT JSON
STRING FOR VALUES

FINALIZATION
WRITE JSON OUTPUT STRING TO JSON.OUTPUT

RESULTS

Because the model 1s reading/writing the JSON
input/output only one time each, the model run time
differences are not noticeable using the JSON routines.
Every namelist that 1s read using the wrapper 1s written
out, so there 1s no doubt about which values and namelists
were used 1n the experiment. The output JSON file can be
casily parsed, whereas the namelist output 1s written to a
logfile that can contain more than just namelists. The
answers bitwise reproduce the answers obtained using the
namelist (Fig 3). C-functions that require user-defined
input have a routine that they can call instead of calling a
Fortran function to read the namelist. Errors are more
descriptive as opposed to the general message used for
namelists, and the JSON output file can be dumped out to
see how far along the JSON reading was when the error
occurred.

METHODS

Table 1 - Number of namelist Reads, Writes, and the difference between them

Model Component Namelists Read Namelist Written R-W
AtmDynamics 14 13 1
AtmPhysics -6

ce -2
Ocean -9

Land 0
Coupler 0
Infrastructure 44 24 20

total 214 210 4

A JSON 1s generated from an existing namelist by
converting the namelist into a JSON array of
JSON objects (Fig 2). The JSON 1s then read by
the model and stored as a string. The JSON 1s
parsed for the “namelist” and each key in the
namelist. The values of the keys are extracted.
Whether or not the key 1s 1in the JSON, 1t’s value
1s stored 1n the output JSON. The output JSON 1s
written at the model’s end.

Fig 3 - Surface temperatures (K) using a) namelists and
b) JSON as the experiment parameter input method

Fig 2 - Example namelist to JSON conversion

&example_nml
array =1,2,3,4,5
array(2) = 20
array2 = 3*20
string="hello’

/ 1}

{" example_nml"[
{"array™:[1,2,3,4,5]},
{"array(2)":20},

{"array2”:[20,20,20]},
{“string”: "hello"}

305
304

(]
o]
L]

302
301
300
299
298
297
296
295

293
292

290
289

P2
w0
s

[
W
—

]
(2]
o

287
286
285
284
283
282
281
280

278
277

275

AEEEEETT T T T T T T T T T TTTTTTTTIEED
X})
~J ~l
) w0

CONCLUSION

Replacing namelists with JSON maintains the functionality
of the namelist while adding improvements such as
portability, multilanguage support, and quality control
checking of the input.

