

Mutual Information based Spectrally Segmented Stacked Autoencoder Approach for Spectral-Spatial Classification of Land Use Land Cover Using Hyperspectral Data Subir Paul^a (*agsubir@gmail.com*), D. Nagesh Kumar^a

^a Department of Civil Engineering, Indian Institute of Science, Bengaluru 560012, India

INTRODUCTION

- ✓ Hyperspectral (HS) data comprises of large number of continuous spectral bands (~ 100-250) with very fine bandwidths (~ 5-10 nm).
- ✓ Though HS data are very resourceful for classification studies, these have few limitations like data redundancy and curse of dimensionality.
- \checkmark Feature extraction techniques are employed on the HS data to deal with the data redundancy issue.

OBJECTIVES

- \checkmark Spectral segmentation of HS bands based on Mutual Information (MI) and extraction of local nonlinear spectral features from each spectral segments using Auto-Encoder (AE) or Stacked AE (SAE).
- ✓ Use of Segmented SAE (S-SAE) features for creating Extended Morphological Profiles (EMPs) to be considered as spatial features.
- ✓ Spectral-spatial Classification of HS data using Support Vector Machine (SVM) and Random Forest (RF) classifier.

Fig. 2. (a) single layer AE network and (b) SAE (with two hidden layer) network with classifier.

DATASETS

Table 1 Land use land cover details of HS datasets

Dataset	Indian Pines		Pavia University		Botswana	
Sl. No.	Class name	Samples	Class name	Samples	Class name	Samples
1	Alfalfa	46	Asphalt	6631	Water	270
2	Corn-notill	1428	Meadows	18649	Hippo grass	101
3	Corn-mintill	830	Gravel	2099	Floodplain grasses 1	251
4	Corn	237	Trees	3064	Floodplain grasses 2	215
5	Grass-pasture	483	Painted metal sheets	1345	Reeds	269
6	Grass-trees	730	Bare Soil	5029	Riparian	269
7	Grass-pasture- mowed	28	Bitumen	1330	Firecar	259
8	Hay-windrowed	478	Self-Blocking Bricks	3682	Island interior	203
9	Oats	20	Shadows	947	Acacia woodlands	314
10	Soybean-notill	972			Acacia shrublands	248
11	Soybean-mintill	2455			Acacia grasslands	305
12	Soybean-clean	593			Short mopane	181
13	Wheat	205			mixed mopane	268
14	Woods	1265			Exposed soils	95
15	Buildings-Grass- Trees-Drives	386				
16	Stone-Steel-Towers	93				
Total Samples 1		10249		42776		3248

Table 2 Classification performance of the S-SAE extracted spectral-spatial features of Indian Pines dataset							
Spectrally segmented range of bands		S-SAE-C1-IP Units in 1 st – 2 nd hidden layer	S-SAE-C2-IP Units in 1 st – 2 nd hidden layer	S-SAE-C3-IP Units in 1 st – 2 nd hidden layer	S-SAE-C4-IP Units in 1 st – 2 nd hidden layer		
Band 1-35		10 – 2	10 – 3	10 - 4	15 –3		
Band 36-60		10 - 2	10 - 2	10 - 1	15 - 2		
Band 61-79		10 - 2	10-3	10 – 3	15 –3		
Band 80-104		-	-	-	-		
Band 105-145		10 - 2	10 - 1	10 - 1	15 – 1		
Band 146-200		10 - 2	10 - 1	10 - 1	15 – 1		
Total spectral features		10	10	10	10		
Time required for FE		4.95 min	5.31 min	4.65 min	5.69 min		
Spectral-spatial features		30	30	30	30		
DRE SVM	OA (%)	92.14±0.62	93.08±0.74	91.69±0.74	91.72±1.19		
alossifion	k	0.9104 ± 0.0070	0.9211 ± 0.0084	0.9052 ± 0.0084	0.9055 ± 0.0135		
classifier	AA (%)	93.53±1.81	94.28±1.23	91.58±1.80	93.36±2.33		
	OA (%)	95.81±0.75	96.52±0.54	96.42±0.37	96.66±0.66		
RF classifier	k	0.9521±0.0086	0.9603±0.0062	0.9591±0.0043	0.9619±0.0076		
-	$\Delta \Delta (\%)$	96 06+0 91	97 / 9+0 / 0	07 18+0 55	97 42+0 91		

Table 3 Optimal performances of different spectral and spectral-spatial classification approaches

Indian Pines dataset							
Approaches	Spectral cla	ssification		Spectral-spatial classification			
FE methods	AE	SAE	PCA	AE	S-AE	S-SAE	
Classifier	RBF-SVM	RBF-SVM	RF	RF	RF	RF	
OA (%)	80.46±0.73	80.16±0.63	94.77±0.70	95.63±0.62	96.07±0.60	96.66±0.66	
k	0.776 ± 0.008	0.773 ± 0.007	0.940 ± 0.008	0.950 ± 0.007	0.955 ± 0.007	0.962±0.008	
AA (%)	79.63±2.71	80.53±2.77	95.92±0.73	95.93±1.53	97.03±0.79	97.42±0.91	
		Pavia	a University d	ataset			
Classifier	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	
OA (%)	92.25±0.38	90.57±0.26	94.11±0.58	95.15±0.29	94.88±0.48	96.66±0.28	
k	0.897 ± 0.005	0.874 ± 0.003	0.921 ± 0.008	0.935 ± 0.004	0.9320 ± 0.006	0.956±0.004	
AA (%)	90.96±0.65	89.90 ± 0.41	94.60 ± 0.76	95.30 ± 0.47	94.75±0.72	96.21±0.37	
		В	otswana datas	set			
Classifier	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	RBF-SVM	
OA (%)	91.77±0.71	91.72±0.95	96.42±0.81	97.15 ± 0.72	97.28±0.74	97.61±1.04	
k	0.911 ± 0.008	0.910 ± 0.010	0.961 ± 0.009	0.969 ± 0.008	0.970 ± 0.008	0.974±0.011	
AA (%)	92.43±0.74	92.41±0.88	96.74 ± 0.60	97.42 ± 0.58	97.17±0.80	97.74±0.85	
Spectral-AE	5, OA=81.55%	14 13 12 11 10 9 8 7 6 6 6 6 6 7 6 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	tral-SAE, OA=82.	14 -14 -13 -12 -11 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 01% Sp -16 -15 -14 -15 -14 -15 -14 -15 -14 -15 -15 -15 -15 -15 -15 -15 -15	Dectral-Spatial-PCA	, OA=94.61%	
Spectral-Spatia	I-AE, OA=94.93%	113 122 111 10 9 8 7 7 6 6 6 6 6 7 7 6 6 6 6 7 7 6 6 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7 7 8 8 8 7 8 8 8 7 8 9 8 9	Spatial-S-AE, OA=	=96.59% Spe	cctral-Spatial-S-SAE	E, OA=97.17%	

Fig. 4. Classified maps and corresponding OA for the Indian Pines dataset.

- classification of the HS data.

- better with other two datasets.
- statistically significant.

ACKNOWLEDGMENTS

- Travel is supported by the **Tata Trusts**.

Paper Number: B31K-2421

CONCLUSIONS

✓ Nonparametric dependency measure MI based S-SAE approach is proposed for spectral-spatial

✓ Spectral segmentation contributes in reducing the computation time for feature extraction.

S-SAE extracts most apt representative deep nonlinear local features from the data, which contributes in improved classification accuracy.

✓ RF classifier is performing better with Indian Pines dataset, whereas RBF-SVM is performing

The improvements in performance measures with the proposed approach are proven to be

REFERENCES

Chen *et al.* (2014). Deep learning-based classification of hyperspectral data. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 7, 2094-2107.

Paul, S., & Kumar, D.N. (2018). Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach. *ISPRS journal of photogrammetry and remote sensing*, *138*, 265-280.

Paul, S., & Kumar, D.N. (2019). Partial informational correlation-based band selection for hyperspectral image classification. *Journal of Applied Remote Sensing*, 13, 046505.

Paul, S., Poliyapram, V., Kumar, D.N., & Nakamura, R. (2019). Performance evaluation of convolutional neural network at hyperspectral and multispectral resolution for classification. In, Image and Signal Processing for Remote Sensing XXV (p. 111550M): International Society for Optics and Photonics.

Zabalza *et al.* (2016). Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing, 185, 1-10.

AGU Fall Meeting General Student Travel Grant. ✓ Financial Support from IISc GARP Funding.