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Research Overvi

= Goal is to understand the sill-controlled
transport and circulation regimes in an
idealized ice-shelf cavity.

= Posed as 2-layer cavity circulation problem
with imposed along-channel density gradient.

= Parameter regime is explored using numerical
model, and phenomena are explained using PV
balance and simplified uniform PV theory.

Pine Island Glacier (Motivation)

= Pine Island Glacier (PIG) is one of the most
rapidly retreating glaciers.

= Bathymetric sill under Pine Island Glacier
modulates inflow of warm Circumpolar Deep
Water (CDW) into the ice-shelf cavity.">?

= Warm, salty bottom layer inflows over sill and
flows out above as (less dense) cold, fresh water
after transformation near ice-shelf. This
transformation occurs primarily close to the
grounding line.
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Figure 1: Pine Island Glacier location and geometry. Credit:
Rignot et al. 2002 [1] and NASA [4].

Cavity Parameters

Cavity Size: W x L x H = 50km x 100km x 700m
Sill Height: Hg;; = 400 m

Density: p = 1027.47 - 1027.75 kg/m?

Coriolis Parameter: f = —1.41 x 1074571
Transport: Q ~ 300 - 500 mSv

Internal Baroclinic Def. Radius: L; =5 km
Pressure Head: AH>= 100 - 200 m

Drag Velocity: r=.1-14 x10~> m/s

Model Configuration

= Back of the Envelope Ocean Model (BEOM) is a
hydrostatic shallow-water isopycnal model that
simulates rotating basins with layer-outcropping.’

= We use a prescribed stratification nudging at
north and south ends of channel instead of a fixed
water mass transformation rate.
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Figure 2: Representative geometry of low-drag, high-sill case
(similar to PIG), with snapshot of 7). Geostrophic boundary

currents, variability, and a shock are evident.

Cross-Sill Exchange

= Sill height strongly controls the mean transport
above critical threshold, drag primarily controls
variability, and both drag and pressure head
follow geostrophic dynamics
Qgeo ~ |f‘L3AH2 .
= Nondimensional parameters:
Drag: 7 = rLsuH;' /(| f|LaHo(H3' — Ho))
Sill Height: Hsin = Hsﬂ]/HZN
Pressure Head: AH, = AH,/HY
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Figure 3: Mean and variance of transport Q = Q/Qgeo as a
function of nondimensional drag, sill height, and pressure head.
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High Drag Regime

= Steady solutions characterized by Stommel-
balanced boundary currents, which cross sills
gradually and symmetrically due to sign of Sigpo.
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Figure 4: Numerical solution for the high-drag case showing
interface displacement 1 and top and bottom transport stream-
function and PV.

Low Drag Regime

= Eddying solutions are observed, which depend on
sill height. Unimpeded domain-filling circulation
for low-sills, intensification of western boundary
currents and eddies for intermediate sills, and
emergence of shocks and abundant, small eddies
for higher sills.
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Figure 5: Snapshot of bottom layer vorticity (, for varying sill
height for constant, low-drag cases.

Hydraulically-Controlled Regime

= Theoretical estimates for geostrophic and
hydraulically-controlled transport match
numerical results. Transport is geostrophic for
low sills and decreases for controlled regime.
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Figure 6: Predicted transport for geostrophic, critical, and

grounded conditions and numerical results.
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Figure 7: Regime diagram for nondimensional Hg; vs. 7.

Summary and Future Work

= 3 parameter regimes observed in 2-layer cavity
flows depending on sill height and drag.

= Transport set by along-channel thermal shear
for low sills and hydraulic control for high
sills. Variability controlled by drag.

= Further work will include responsive diabatic
forcing in the cavity (i.e. realistic ice melt and
consequent buoyancy forcing) and study the
response of an evolving ice-shelf.
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